As cyberattacks become more intelligent, the difficulty increases for traditional intrusion detection systems to detect advanced attacks that deviate from previously stored patterns. To solve this problem, a deep learning-based intrusion detection system model has emerged that analyzes intelligent attack patterns through data learning. However, deep learning models have the disadvantage of having to re-learn each time a new cyberattack method emerges. The time required to learn a large amount of data is not efficient. In this paper, an experiment was conducted using the Leipzig Intrusion Detection Data Set (LID-DS), which is a host-based intrusion detection data set released in 2018. In addition, in order to evaluate and improve the performance of the system, a host-based intrusion detection model consisting of pre-processing, vector-toimage processing, training and testing steps is proposed. In the training and testing steps, a Siamese Convolutional Neural Network (Siamese-CNN) is constructed using the few-shot learning method, which shows excellent performance by learning a small amount of data. Siamese-CNN determines whether the attack type is the same based on the similarity score of each cyberattack sample converted to an image. The accuracy was calculated using the few-shot learning technique. The performance of the Vanilla Convolutional Neural Network (Vanilla-CNN) and Siamese-CNN are compared to confirm the performance of Siamese-CNN. As a result of measuring the accuracy, precision, recall, and F1-score indicators, it was confirmed that the recall of the Siamese-CNN model proposed in this study increased by about 6% compared to the Vanilla-CNN model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.