A method for measuring the ethanol concentration in a yeast culture broth was developed using both microtubes and a 96-deepwell microplate. The strategy involved first the solvent extraction of ethanol from the yeast culture broth and measurements of the ethanol concentration using the dichromate oxidation method. Particular focus was made on selecting the extraction solvent as well as determining the measurable range of ethanol concentrations using this solvent extraction-dichromate oxidation method. This method was developed as an assay format in 2.0-ml microtubes and 1.2-ml 96-deepwell microplates, and the ethanol concentration in the batch cultures and fed-batch fermentations was measured. Tri-n-butyl phosphate [non-alcoholic solvent, density = 0.9727, solubility in water = 0.028% (w/v)] was used for solvent extraction when measuring the ethanol concentration from the yeast culture broth. The maximum detectable ethanol concentration was 8% (v/v) when 10 g potassium dichromate in 100 ml of 5 M sulfuric acid was used. The concentrations determined from the solvent extraction-dichromate oxidation methods were remarkably similar to those of gas chromatography in which samples were prepared from seven experiments, such as four batch cultures and three fed-batch fermentations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2025 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.