ObjectiveThis study investigated the role of microRNAs generated from adipose tissue macrophages (ATMs) during adipose tissue remodeling induced by pharmacological and nutritional stimuli.MethodsMacrophage-specific Dicer knockout (KO) mice were used to determine the roles of microRNA generated in macrophages in adipose tissue remodeling induced by the β3-adrenergic receptor agonist CL316,243 (CL). RNA-seq was performed to characterize microRNA and mRNA expression profiles in isolated macrophages and PDGFRα+ adipocyte stem cells (ASCs). The role of miR-10a-5p was further investigated in cell culture, and in adipose tissue remodeling induced by CL treatment and high fat feeding.ResultsMacrophage-specific deletion of Dicer elevated pro-inflammatory gene expression and prevented CL-induced de novo beige adipogenesis in gonadal white adipose tissue (gWAT). Co-culture of ASCs with ATMs of wild type mice promoted brown adipocyte gene expression upon differentiation, but co-culture with ATMs of Dicer KO mice did not. Bioinformatic analysis of RNA expression profiles identified miR-10a-5p as a potential regulator of inflammation and differentiation in ATMs and ASCs, respectively. CL treatment increased levels of miR-10a-5p in ATMs and ASCs in gWAT. Interestingly, CL treatment elevated levels of pre-mir-10a in ATMs but not in ASCs, suggesting possible transfer from ATMs to ASCs. Elevating miR-10a-5p levels inhibited proinflammatory gene expression in cultured RAW 264.7 macrophages and promoted the differentiation of C3H10T1/2 cells into brown adipocytes. Furthermore, treatment with a miR-10a-5p mimic in vivo rescued CL-induced beige adipogenesis in Dicer KO mice. High fat feeding reduced miR-10a-5p levels in ATMs of gWAT, and treatment of mice with a miR-10a-5p mimic suppressed pro-inflammatory responses, promoted the appearance of new white adipocytes in gWAT, and improved systemic glucose tolerance.ConclusionsThese results demonstrate an important role of macrophage-generated microRNAs in adipogenic niches and identify miR-10a-5p as a key regulator that reduces adipose tissue inflammation and promotes therapeutic adipogenesis.
Epigallocatechin-3-gallate (EGCG) is a primary bioactive phytochemical in green tea. Its therapeutic potential in metabolic diseases has been reported; however, the molecular mechanisms of the anti-obesity effect of EGCG have not been fully elucidated. In this study, we examined the effects of EGCG on lipid metabolism and autophagy in adipose tissue. After 8 weeks of high-fat diet feeding, mice were treated with EGCG (20 mg/kg/day) for 2 weeks to test in vivo anti-obesity effects of EGCG. EGCG treatment improved glucose tolerance and caused body weight loss. Interestingly, reduced adipose tissue mass was more prominent in visceral compared to subcutaneous white adipose tissue. Mechanistically, EGCG treatment increased autophagic flux in white adipose tissue through the AMP-activated protein kinase-mediated signaling pathway. Adipocyte-specific knockout of Beclin1 mitigated the effects of EGCG on visceral adipose tissue mass and glucose tolerance, indicating that the anti-obesity effect of EGCG requires Beclin1-dependent autophagy. Collectively, our data demonstrated that EGCG has anti-obesity effects through the upregulation of Beclin1-dependent autophagy and lipid catabolism in white adipose tissue (WAT).
Aging-related adipose tissue dysfunction contributes to the progression of chronic metabolic diseases. We investigated the role of age-dependent expression of a neurotrophin, brain-derived neurotrophic factor (BDNF) in adipose tissue. Pro-BDNF expression was elevated in epididymal white adipose tissue (eWAT) with advanced age, which was associated with the reduction in sympathetic innervation. Interestingly, BDNF expression was enriched in PDGFR + adipocyte progenitors isolated from eWAT, with age-dependent increase in expression. In vitro pro-BDNF treatment caused apoptosis in adipocytes differentiated from C3H10T1/2 cells, and siRNA knockdown of sortilin mitigated these effects. Tamoxifen-inducible PDGFR + cell-specific deletion of BDNF (BDNF Pdgfra KO) reduced pro-BDNF expression in eWAT, prevented age-associated declines in sympathetic innervation and mitochondrial content in eWAT, and improved insulin sensitivity. Moreover, BDNF Pdgfra KO mice showed reduced expression of aging-induced inflammation and senescence markers in eWAT. Collectively, these results identified the upregulation of pro-BDNF expression in adipocyte progenitors as a feature of visceral white adipose tissue aging and suggested that inhibition of BDNF expression in adipocyte progenitors is potentially beneficial to prevent aging-related adipose tissue dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.