This paper describes the development of deep learning based human-centered threat assessment for application to automated driving vehicle. To achieve naturalistic driver model that would feel natural while safe to a human driver, manual driving characteristics are investigated through real-world driving test data. A probabilistic threat assessment with predicted collision time and collision probability is conducted to evaluate driving situations. On the basis of collision risk analysis, two kinds of deep learning have been implemented to reflect human driving characteristics for automated driving. A deep neural network (DNN) and recurrent neural network (RNN) are designed by neural architecture search (NAS), and by learning from the sequential data, respectively. The NAS is used to automatically design the individual driver’s neural network for efficient and effortless design process while ensuring training performance. Sequential trends in the host vehicle’s state can be incorporated through hand-made RNN. It has been shown from human-centered risk assessment simulations that two successfully designed deep learning driver models can provide conservative and progressive driving behavior similar to a manual human driver in both acceleration and deceleration situations by preventing collision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.