The present study was conducted to investigate the comparative effects of organic and inorganic forms of sulfur, methyl sulfonyl methane (MSM) and sodium sulfate (SS), on laying performance, egg quality, ileal morphology, ileal volatile fatty acids, and antioxidant and stress markers in various biological samples in aged laying hens. A total of 144, 73-week-old Lohman Brown-Lite laying hens were randomly assigned to one of three experimental diets: basal diet (CONT), CONT + 0.2% MSM (MSM), and CONT + 0.3% SS (SS). The trial lasted for 12 weeks. MSM and SS diets contained 0.07% of sulfur, either organic or inorganic. Dietary MSM did not affect egg production or feed conversion ratio at 12 weeks compared with the CONT group. Dietary sulfur did not affect egg quality except for the Haugh unit at 4 weeks, which was lowered (p < 0.05) in the SS group. Compared with the CONT group, a higher (p < 0.05) villus height to crypt depth ratio was observed in the SS group. Dietary sulfur did not affect the percentages of short-chain fatty acids in the ileum. Total antioxidant capacity of the liver increased (p < 0.05) in laying hens fed MSM- and SS-added diets compared with the CONT group. The MSM and SS groups were found to have lowered (p < 0.05) malondialdehyde (MDA) concentration in serum samples compared with CONT. Finally, dietary MSM had the lowest (p < 0.05) MDA concentrations in yolk samples. Taken together, our study showed that dietary organic and inorganic sulfur have positive effects on ileal morphology and antioxidant capacity in laying hens. However, SS-mediated inhibition in laying performance needs to be clarified.
The objectives of this study were to recover bacteriophages (BPs) from the intestinal digesta of BP-fed broilers and to evaluate the antibacterial effects of encapsulated or powdered BPs in broiler chickens challenged with Clostridium perfringens. Day-old broiler chicks (n = 320/experiment) were randomly assigned to 32 pens (n = 10 broilers/pen) and allocated to one of four dietary groups: (1) unchallenged group (NEG); (2) C. perfringens-challenged group (POS); (3) POS group fed a diet supplemented with powdered BPs; and (4) POS group fed a diet supplemented with encapsulated BPs. On days 21, 22, and 23 post-hatch, all chickens except NEG were orally inoculated twice a day with 2 mL C. perfringens (1.0 × 108 cfu/mL). Varying BP levels were detected in gut digesta at all ages and were numerically or significantly higher in the encapsulated BP group than in the powdered BP group. Dietary powder or encapsulated BPs reversed the C. perfringens-mediated increase in crypt depth. In addition, villus height to crypt depth ratio was elevated in the NEG and BP-treated/challenged groups compared with that in the POS group. C. perfringens counts in the cecum were significantly lower in the BP-fed chickens than in the POS group. The encapsulated BP-supplemented diet-fed chickens had the highest serum IgA levels. Collectively, our results suggest that dietary BP remains viable in intestinal digesta upon ingestion and can inhibit cecal C. perfringens counts.
The objective of this study was to evaluate the effects of dietary sulfur from either organic (methyl sulfonyl methane, MSM) or inorganic (sodium sulfate, SS) sources on the growth performance of broiler chickens challenged against a high-dose coccidiosis vaccine. A total of 320 day-old Ross 308 broiler chicks were randomly placed into 32 pens of 10 birds each (keeping 16 pens/control group and 8 pens/treatment group until 21 days post-hatch) and reared for 28 days. The experimental diets were formulated by mixing a corn and soybean meal-based control diet with MSM or SS. At 21 days post-hatch, half (n = 8) of the control and all of the sulfur-added diet-fed (i.e., MSM and SS) groups were challenged with a 30-fold dose of a commercially available Eimeria vaccine (Livacox® T coccidiosis vaccine). Unchallenged control chicks (n = 8) were considered as the negative control group. At 21 days (before coccidiosis vaccine challenge), the production parameters and cecal short-chain fatty acids were not affected by dietary treatments. The concentrations of total antioxidant capacity in liver samples were elevated in both the MSM and SS groups compared with the control group (p = 0.001). During 21 to 28 days (i.e., one week post coccidiosis vaccine challenge), challenge tended to lower body weight and feed intake by an average of 5.3% (p = 0.262) and 2.8% (p = 0.504), respectively, but to increase the feed conversion ratio by an average of 2.7% (p = 0.087) compared with the non-challenged control groups. None of dietary sulfur groups affected the body weight gain, feed intake, or feed conversion ratio of vaccine-challenged chickens. Mild Eimeria-specific lesions were noted in duodenum (p = 0.006), jejunum (p = 0.017), and ceca (p = 0.047), but dietary sulfur treatments did not affect the Eimeria-induced gut lesion scores. At 28 days, Eimeria challenge significantly impaired (p = 0.001) the apparent ileal digestibility of crude protein and crude ash compared with the naïve control group. Dietary MSM increased the apparent ileal digestibility of crude ash by 15.5% on average compared with the coccidiosis vaccine control group. We conclude that dietary antioxidant sulfur of organic or inorganic origins at the inclusion level (i.e., 0.7 g sulfur/kg of diet) has a limited effect on the growth performance of chickens challenged with coccidiosis vaccine.
This study evaluated the effects of graded levels of dietary methyl sulfonyl methane (MSM) on the laying performance, egg quality, antioxidant capacity, and the incorporation of MSM into the egg albumen of laying hens. A total of 240 73-week-old laying hens (Lohmann Brown Lite) were randomly allotted to 1 of 5 dietary treatments, with 8 replicates of 6 birds per replicate. The experimental diets were formulated by mixing corn and soybean meal-based diets with MSM to reach 0.0, 1.0, 2.0, 3.0, and 4.0 g per kg of diet, and were fed to the birds for 12 weeks. Increasing dietary MSM led to a significant quadratic effect on the feed intake and feed conversion ratio at 4 weeks (p < 0.05). However, none of the egg qualities and egg components were altered by dietary MSM. The deposition of MSM in egg albumens increased in a linear manner (p < 0.05) in response to the increasing dietary MSM levels. The concentration of malondialdehyde in the egg yolk decreased at 12 weeks (linear and quadratic effect; p < 0.05), as the dietary MSM levels increased. Increasing dietary MSM affected the indicators of antioxidant/oxidative stress in the serum samples, such as superoxide dismutase at 12 weeks (linear and quadratic effect; p < 0.05), total antioxidant capacity at 8 and 12 weeks (linear effect; p < 0.05), and malondialdehyde at 8 weeks (linear effect; p < 0.05). Taken together, our study shows that dietary MSM has potential to be used as an antioxidant feed additive for laying hens, and can be used to produce functional eggs with health benefits for humans.
A feeding trial was conducted to investigate the effect of dietary supplementation of Chlorella vulgaris (CV) or Tetradesmus obliquus (TO) on laying performance, egg quality, and gut health indicators of laying hens. A total of 144 Hy-Line Brown laying hens aged 21 weeks were randomly assigned to one of three dietary treatments with eight replicates of six hens. Dietary treatments were as follows: CON, basal diet; CV, basal diet + 5 g C. vulgaris/kg of diet; TO, basal diet + 5 g T. obliquus/kg of diet. The results showed that diets supplemented with CV or TO had insignificant effects on laying performance, egg quality (i.e., Haugh unit and eggshell strength and thickness), jejunal histology, cecal short-chain fatty acids, and antioxidant/immune markers in ileal mucosa samples of laying hens. Compared with the control group, the egg yolk color score was higher (p < 0.05) in laying hens fed on diets containing CV and TO, although the former was a more intense yellow than the latter. Small intestinal lamina propria cells were isolated using flow cytometry to examine the percentages of immune cell subpopulations. Dietary microalgae did not affect B cells or monocytes/macrophages but altered the percentage of CD4+ T cells and CD8− TCR γδ T cells. Collectively, diets supplemented with C. vulgaris or T. obliquus can improve egg yolk color and would modulate host immune development and competence in laying hens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.