Purpose: The purpose of this study was to evaluate the ability of contrast-enhanced ultrasonography (CEUS) with microbubbles to detect metastatic lymph nodes (LNs) for treatment planning and prognosis. Methods: For the metastatic LN model, ground VX 2 tumor tissues were injected subcutaneously in 12 rabbits, just below the right hind limb. The rabbits were classified into three groups based on the LN area: group A (n=4, >1.9 cm 2 ), group B (n=4, 1-1.9 cm 2 ), and group C (n=4, <1 cm 2 ). The LNs were monitored on CEUS for 10 seconds after injecting 2.5 mL of microbubbles. The percent area of metastatic LNs was calculated on pathologic images and compared with CEUS images. Results: In group A, the mean percent area of metastasis was 40.7%±19.4%. In all cases of metastasis, round-shaped perfusion defects were clearly observed in CEUS images. The metastatic areas were strongly correlated with pathologic findings. The mean percent area in group B was 21.5%±14.4%. The CEUS findings showed multiple nodular perfusion defects, clearly revealing the metastatic areas. In group B, the CEUS and pathologic findings were concordant for three of the four cases. The mean percent area in group C was 9.1%±6.4%. However, in this group, CEUS only detected a small perfusion defect in one case. Conclusion: CEUS has the potential to depict characteristic imaging features of metastatic LNs but still has limitations in early detection.
In this study, seven of the most commonly applied covering materials in smart farms are selected as the representative samples for analysis, namely, glass, soft film (polyethylene, PE), soft film (polyolefin, PO), rigid plastic film (ethylene tetra fluoro ethylene, ETFE), rigid plastic sheet (poly methyl methacrylate, PMMA), rigid plastic sheet (polycarbonate, PC double layer), and woven film. For each covering material, visible light transmittance and reflectivity, solar radiation transmittance and reflectivity, thickness, solar heat gain coefficient, and the coefficient of heat transmission are measured according to the test methods in the Korean Industrial Standards (KS) to derive input data for the respective materials. In addition, using the optical and thermal input data as derived above, simulations are performed on the cooling load and daylight characteristics of smart farms to derive basic reference data for the selection of adequate covering materials for the design. Based on the analysis result of the daylight characteristics for each covering material, for a shading rate of 60%, the average values of indoor illuminance were 19,879 lux, 20,012 lux, 19,393 lux, 19,555 lux, 16,560 lux, 16,228 lux, and 11,173 lux for glass, PE film, PO film, ETFE, woven film, PMMA, and PC double layer, respectively, between 6 am and 8 pm, which correspond to the hours when daylight enters indoor spaces. Considering the target light intensity for strawberry growth at 10,000–40,000 lux, the above results confirm that all the sample covering materials had an indoor illuminance level above the lower limit range of the target light intensity. For the cooling load evaluation, the PC double layer had the lowest value of 482.8 W/m2, and PO film had the highest value of 633.8 W/m2. The difference between the cooling loads of the PC double layer and the PO film is 151 W/㎡, which amounts to 23.8%, thus indicating that the selected covering material significantly impacts the cooling load. The cooling load exhibited a pattern similar to that of the coefficient of heat transmission and solar heat gain coefficient, which are key influencing factors for most of the sample materials. However, for PMMA, the cooling load was low because it had a higher coefficient of heat transmission than other materials, but its solar heat gain coefficient was relatively low. Another possible reason for the difference is that the solar heat gain coefficient impacts the cooling load. When the cooling set temperature was controlled from Case 1-1 to Case 1-2, the cooling load decreased by 10.7% on average. In addition, when the cooling set temperature changed from Case 1-1 to Case 1-3, the cooling load decreased by 26.1% on average. For cooling set temperature control, maintaining the temperature around the lower temperature range of the optimal growth temperature of the plants increases the yield, but it also incurs increased cooling load and cost. In terms of cost only, while maintaining the cooling temperature for 24 h at 30 °C, which is the upper limit of the optimal growth temperature, would be advantageous, it will lead to a deterioration of the quality and reductions in yield. Therefore, as follow-up studies for further investigation of the findings of this research, there is the need for an evaluation of the yield and quality with respect to the range of cooling set temperatures. When the internal shading rate was increased to 40% (Case 2-2) with reference to Case 2-1, which was a greenhouse without the application of internal shading, the cooling load decreased by 27.4% on average. Furthermore, when the internal shading rate increased to 50% (Case 2-3) with reference to Case 2-1, the cooling load decreased by 29.3% on average. When the internal shading rate increased to 60% (Case 2-4), the cooling load decreased by 31.5% on average.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.