The results of two‐dimensional fluid simulation of number densities and fluxes of the main building blocks and surface preparation species involved in nanoassembly of carbon‐based nanopatterns in Ar+H2+C2H2 reactive plasmas are reported. It is shown that the process parameters and non‐uniformity of surface fluxes of each particular species may affect the targeted nanopattern quality. The results can be used to improve predictability of plasma‐aided nanofabrication processes and optimize the parameters of plasma nanotools.magnified image
Amyloid brain positron emission tomography (PET) images are visually and subjectively analyzed by the physician with a lot of time and effort to determine the β-Amyloid (Aβ) deposition. We designed a convolutional neural network (CNN) model that predicts the Aβ-positive and Aβ-negative status. We performed 18F-florbetaben (FBB) brain PET on controls and patients (n=176) with mild cognitive impairment and Alzheimer's Disease (AD). We classified brain PET images visually as per the on the brain amyloid plaque load score. We designed the visual geometry group (VGG16) model for the visual assessment of slice-based samples. To evaluate only the gray matter and not the white matter, gray matter masking (GMM) was applied to the slice-based standard samples. All the performance metrics were higher with GMM than without GMM (accuracy 92.39 vs. 89.60, sensitivity 87.93 vs. 85.76, and specificity 98.94 vs. 95.32). For the patientbased standard, all the performance metrics were almost the same (accuracy 89.78 vs. 89.21), lower (sensitivity 93.97 vs. 99.14), and higher (specificity 81.67 vs. 70.00). The area under curve with the VGG16 model that observed the gray matter region only was slightly higher than the model that observed the whole brain for both slice-based and patient-based decision processes. Amyloid brain PET images can be appropriately analyzed using the CNN model for predicting the Aβ-positive and Aβ-negative status.
The characteristics of a 13.56 MHz capacitively coupled rf glow-discharge Ar plasma are studied by particle-in-cell simulation. The model simulates a planar plasma device which can be approximated using a one-dimensional plasma model. The model has proven to be useful to investigate the effect of varying control parameters such as neutral gas pressure, driver frequency, applied rf voltage on the characteristics of the discharge. A set of equations describing the dynamics of the system are presented and used to give analytic scaling laws. The simulation code is used to calculate the pressure dependence of plasma density, sheath width, peak position of the ionization event, and absorbed rf power. Scaling laws relating the control parameters to other operating functions such as average plasma potential, central electron density, absorbed rf power are examined and these functions are compared with simple analytical scaling formula.
Amyloid positron emission tomography (PET) allows early and accurate diagnosis in suspected cases of Alzheimer's disease (AD) and contributes to future treatment plans. In the present study, a method of implementing a diagnostic system to distinguish β-Amyloid (Aβ) positive from Aβ negative with objectiveness and accuracy was proposed using a machine learning approach, such as the Principal Component Analysis (PCA) and Support Vector Machine (SVM). 18 F-Florbetaben (FBB) brain PET images were arranged in control and patients (total n = 176) with mild cognitive impairment and AD. An SVM was used to classify the slices of registered PET image using PET template, and a system was created to diagnose patients comprehensively from the output of the trained model. To compare the per-slice classification, the PCA-SVM model observing the whole brain (WB) region showed the highest performance (accuracy 92.38, specificity 92.87, sensitivity 92.87), followed by SVM with gray matter masking (GMM) (accuracy 92.22, specificity 92.13, sensitivity 92.28) for Aβ positivity. To compare according to per-subject classification, the PCA-SVM with WB also showed the highest performance (accuracy 89.21, specificity 71.67, sensitivity 98.28), followed by PCA-SVM with GMM (accuracy 85.80, specificity 61.67, sensitivity 98.28) for Aβ positivity. When comparing the area under curve (AUC), PCA-SVM with WB was the highest for per-slice classifiers (0.992), and the models except for SVM with WM were highest for the per-subject classifier (1.000). We can classify 18 F-Florbetaben amyloid brain PET image for Aβ positivity using PCA-SVM model, with no additional effects on GMM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.