Variability is a problem for the scalability of semiconductor quantum devices. The parameter space is large, and the operating range is small. Our statistical tuning algorithm searches for specific electron transport features in gate-defined quantum dot devices with a gate voltage space of up to eight dimensions. Starting from the full range of each gate voltage, our machine learning algorithm can tune each device to optimal performance in a median time of under 70 minutes. This performance surpassed our best human benchmark (although both human and machine performance can be improved). The algorithm is approximately 180 times faster than an automated random search of the parameter space, and is suitable for different material systems and device architectures. Our results yield a quantitative measurement of device variability, from one device to another and after thermal cycling. Our machine learning algorithm can be extended to higher dimensions and other technologies.
Scalable quantum technologies will present challenges for characterizing and tuning quantum devices. This is a time-consuming activity, and as the size of quantum systems increases, this task will become intractable without the aid of automation. We present measurements on a quantum dot device performed by a machine learning algorithm. The algorithm selects the most informative measurements to perform next using information theory and a probabilistic deep-generative model, the latter capable of generating multiple full-resolution reconstructions from scattered partial measurements. We demonstrate, for two different measurement configurations, that the algorithm outperforms standard grid scan techniques, reducing the number of measurements required by up to 4 times and the measurement time by 3.7 times. Our contribution goes beyond the use of machine learning for data search and analysis, and instead presents the use of algorithms to automate measurement. This work lays the foundation for automated control of large quantum circuits. † Both authors contributed equally and are displayed in alphabetical order.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.