In the copper oxide parent compounds of the high-transition-temperature superconductors the valence electrons are localized--one per copper site--by strong intra-atomic Coulomb repulsion. A symptom of this localization is antiferromagnetism, where the spins of localized electrons alternate between up and down. Superconductivity appears when mobile 'holes' are doped into this insulating state, and it coexists with antiferromagnetic fluctuations. In one approach to describing the coexistence, the holes are believed to self-organize into 'stripes' that alternate with antiferromagnetic (insulating) regions within copper oxide planes, which would necessitate an unconventional mechanism of superconductivity. There is an apparent problem with this picture, however: measurements of magnetic excitations in superconducting YBa2Cu3O6+x near optimum doping are incompatible with the naive expectations for a material with stripes. Here we report neutron scattering measurements on stripe-ordered La1.875Ba0.125CuO4. We show that the measured excitations are, surprisingly, quite similar to those in YBa2Cu3O6+x (refs 9, 10) (that is, the predicted spectrum of magnetic excitations is wrong). We find instead that the observed spectrum can be understood within a stripe model by taking account of quantum excitations. Our results support the concept that stripe correlations are essential to high-transition-temperature superconductivity.
We have investigated the spin dynamics in the strongly correlated chain copper oxide SrCuO2 for energies up to greater, similar 0.6 eV using inelastic neutron scattering. We observe a gapless continuum of magnetic excitations, which is well described by the "Müller ansatz" for the two-spinon continuum in the S=1/2 antiferromagnetic Heisenberg spin chain. The lower boundary of the continuum extends up to approximately 360 meV, which corresponds to an exchange constant J=226(12) meV.
Magnons and phonons are fundamental quasiparticles in a solid and can be coupled together to form a hybrid quasi-particle. However, detailed experimental studies on the underlying Hamiltonian of this particle are rare for actual materials. Moreover, the anharmonicity of such magnetoelastic excitations remains largely unexplored, although it is essential for a proper understanding of their diverse thermodynamic behaviour and intrinsic zero-temperature decay. Here we show that in non-collinear antiferromagnets, a strong magnon–phonon coupling can significantly enhance the anharmonicity, resulting in the creation of magnetoelastic excitations and their spontaneous decay. By measuring the spin waves over the full Brillouin zone and carrying out anharmonic spin wave calculations using a Hamiltonian with an explicit magnon–phonon coupling, we have identified a hybrid magnetoelastic mode in (Y,Lu)MnO3 and quantified its decay rate and the exchange-striction coupling term required to produce it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.