The abrasive mixing variables, such as the abrasive and water flow rates and the focus geometry parameters, determine the profitability of an abrasive waterjet system. In this study, the mixing efficiency characteristics in abrasive waterjet rock cutting were investigated. To demonstrate comprehensively the efficiency reduction due to collision during abrasive mixing, the chance of collision was expressed as the distance between the abrasive particles in the focus. The mixing efficiency was then assessed by utilizing the empirical relationship between the experimental results and the developed model. Based on the particle density and the velocity, the closer particles showed higher chances of collision, thus yielding a reduced cutting performance. Using the distance between particles model, the optimum abrasive flow rate and the cutting performance of abrasive waterjet systems can be estimated. This developed model can be used for the design selection of abrasive flow rate and systems for the cost-effective use of abrasive waterjets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.