In a recent study, we reported the results of a rapid high-throughput expression analysis of the affinity-tagged proteins present in total cell lysates, using a surface plasmon resonance (SPR) imaging protein chip system. In this paper, we describe a novel method, which is able to sequentially carry out a recombinant Escherichia coli culture, as well as the detection and purification of the expressed proteins on a single microwell chip, fabricated on a two-dimensional thin gold film. Following the induction of the protein on the microwell chip, the E. coli cells were lysed on the chip via the addition of lysozymes, and the expressed glutathione S-transferase-fused green fluorescent protein (GST-GFP) was then purified on the chip via affinity interaction with the glutathionylated gold surface of the chip. Finally, the expressed protein was directly detected using the surface plasmon resonance (SPR) imaging system. This system saves a substantial amount of time, experimental resources, and labor, by allowing for the complicated and labor-intensive procedures inherent to the production of recombinant proteins to be conducted on a single microwell chip, simply and economically.
Transfer printing, a promising method for fabricating multi-scale structures on various substrates such as semiconductors and polymers, has been used to fabricate flexible devices with performance superior to that of conventional organic flexible devices. Although thin films might be expected to suffer damage during the transfer printing process, no reports of the degradation of mechanical properties during transfer printing have been published. The change in mechanical properties before and after transfer printing should be evaluated in terms of reliability and design for transfer printing to be successful. We propose a method of fabricating freestanding 200-nm-thick single-crystal silicon (SCS) thin-film specimens using transfer printing in order to investigate the mechanical properties of the transferred SCS thin-film specimens. The fabrication method combines several techniques such as semiconductor manufacturing, liftoff, and transfer printing processes. The core technology in this method is the fabrication of freestanding SCS thin-film structures suspended between two fixed ends. The mechanical properties of the freestanding SCS thin-film structures were measured using a microtensile machine capable of optical strain measurement. The test results provide insight into device design and reliability evaluation of flexible electronics fabricated by nanotransfer printing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.