This paper presents the approach of building a mathematical model for a parallel robotic manipulator with flexible links and elastic joints. The links to the base are assumed to be rigid bodies, and the thin connecting rods are assumed to be flexible links. The elasticity of the transmission from the actuators to the transmission is modeled by a torsional spring and viscous damper. This is a mixed system of rigid bodies, spring, and flexible links. The deformation motion of the elastic link is approximated by shape functions similar to the finite element method. The differential equations of motion are established by combining the substructure method and the Lagrange equation of the 2nd kind for the serial multibody system. Based on the differential equation established for the parallel robot manipulator of five bars, numerical simulations were carried out to investigate the response of the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.