The aim of this paper is to study the asymptotic properties of the maximum likelihood estimator (MLE) of the drift coefficient for fractional stochastic heat equation driven by an additive space-time noise. We consider the traditional for stochastic partial differential equations statistical experiment when the measurements are performed in the spectral domain, and in contrast to the existing literature, we study the asymptotic properties of the maximum likelihood (type) estimators (MLE) when both, the number of Fourier modes and the time go to infinity. In the first part of the paper we consider the usual setup of continuous time observations of the Fourier coefficients of the solutions, and show that the MLE is consistent, asymptotically normal and optimal in the mean-square sense. In the second part of the paper we investigate the natural time discretization of the MLE, by assuming that the first N Fourier modes are measured at M time grid points, uniformly spaced over the time interval [0, T ]. We provide a rigorous asymptotic analysis of the proposed estimators when N → ∞ and/or T, M → ∞. We establish sufficient conditions on the growth rates of N, M and T , that guarantee consistency and asymptotic normality of these estimators.
We study the statistical properties of stochastic evolution equations driven by space-only noise, either additive or multiplicative. While forward problems, such as existence, uniqueness, and regularity of the solution, for such equations have been studied, little is known about inverse problems for these equations. We exploit the somewhat unusual structure of the observations coming from these equations that leads to an interesting interplay between classical and non-traditional statistical models. We derive several types of estimators for the drift and/or diffusion coefficients of these equations, and prove their relevant properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.