Plant breeders have focused on improving plant architecture as an effective means to increase crop yield. Here, we identify the main-effect quantitative trait loci (QTLs) for plant shape-related traits in rice (Oryza sativa) and find candidate genes by applying whole genome re-sequencing of two parental cultivars using next-generation sequencing. To identify QTLs influencing plant shape, we analyzed six traits: plant height, tiller number, panicle diameter, panicle length, flag leaf length, and flag leaf width. We performed QTL analysis with 178 F7 recombinant in-bred lines (RILs) from a cross of japonica rice line ‘SNUSG1’ and indica rice line ‘Milyang23’. Using 131 molecular markers, including 28 insertion/deletion markers, we identified 11 main- and 16 minor-effect QTLs for the six traits with a threshold LOD value > 2.8. Our sequence analysis identified fifty-four candidate genes for the main-effect QTLs. By further comparison of coding sequences and meta-expression profiles between japonica and indica rice varieties, we finally chose 15 strong candidate genes for the 11 main-effect QTLs. Our study shows that the whole-genome sequence data substantially enhanced the efficiency of polymorphic marker development for QTL fine-mapping and the identification of possible candidate genes. This yields useful genetic resources for breeding high-yielding rice cultivars with improved plant architecture.
In Arabidopsis, EARLY FLOWERING3 (ELF3) has pivotal roles in controlling circadian rhythm and photoperiodic flowering. In addition, ELF3 negatively regulates leaf senescence by repressing the transcription of PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PHYTOCHROME-INTERACTING FACTOR5 (PIF5); elf3 mutants senesce earlier and ELF3-overexpressing (ELF3-OX) plants senesce later than wild type (WT). Here, we show that in contrast to Arabidopsis ELF3, which represses senescence, the rice homolog OsELF3.1 promotes leaf senescence; oself3.1 mutants showed delayed senescence and OsELF3.1-OX plants senesced earlier under both dark-induced and natural senescence conditions. Microarray analysis revealed that in the senescing leaves, a number of senescence-associated genes, phytohormone-related genes, and NAC and WRKY family genes (OsNAP, ONAC106, and OsWRKY42) were differentially expressed in oself3.1 mutants compared with WT. Interestingly, we found that Arabidopsis plants overexpressing OsELF3.1 show delayed leaf senescence, produce short petioles, and flower late in long days, just like Arabidopsis ELF3-OX plants. This demonstrates that the regulatory functions of ELF3 and OsELF3.1 are conserved between Arabidopsis and rice, but the downstream regulatory cascades have opposite effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.