Spermatogonial stem cells (SSCs) continuously undergo self-renewal and differentiation to sustain spermatogenesis throughout adulthood in males. In stallions, SSCs may be used for the production of progeny from geldings after cryopreservation and therapy for infertile and subfertile stallions. Undifferentiated cell transcription factor 1 (UTF1) is a putative marker for undifferentiated spermatogonia in humans and rats. The main purposes of this study are to determine the following: 1) changes in the expression pattern of UTF1 at various reproductive stages of stallions, 2) subpopulations of spermatogonia that express UTF1. Testicular samples were collected and categorized based on the age of the horses as follows: pre-pubertal (<1 yr), pubertal (1–1.5 yr), post-pubertal (2–3 yr), and adult (4–8 yr). Western blot analysis was utilized to determine the cross-activity of the UTF1 antibody to horse testes tissues. Immunohistochemistry was conducted to investigate the UTF1 expression pattern in germ cells at different reproductive stages. Whole mount staining was applied to determine the subpopulation of UTF1-positive spermatogonia. Immunohistological analysis showed that most germ cells in the pre-pubertal and pubertal stages were immunolabeled with UTF1, whereas only a few germ cells in the basal compartment of the seminiferous tubule cross-sections of post-pubertal and adult tissues were UTF1-positive. No staining was observed in the Sertoli or Leydig cells at any reproductive stages. Whole mount staining showed that As, Apr, and chains of 4, 8, 16 Aal spermatogonia were immunolabeled with UTF1 in the post-pubertal stallion tubule. Isolated single germ cells were also immunolabeled with UTF1. In conclusion, UTF1 is expressed in undifferentiated spermatogonia, and its antibody can be used as a putative marker for SSCs in stallions.
Expression of the protein DDX4/MVH, or VASA, has been reported in germ cells of several species. The main objectives of this study were to (i) investigate VASA expression patterns in testicular cells of stallions at two different reproductive stages (pre-pubertal and post-pubertal) and (ii) evaluate the use of VASA antibody as a molecular marker for single germ cells from stallions. Testicular tissues were obtained from stallions and categorized as pre-pubertal and post-pubertal based on the formation of lumen and status of spermatogenesis on the cross section of seminiferous tubules. The results of Western blot showed a VASA protein band located at 76 kDa, indicating that the rabbit antibody has a cross-reactivity with horse testicular tissues. The result of immunolabelling showed that VASA was expressed in the cytoplasm of spermatogonia at both reproductive stages and in spermatocytes and round spermatids at the post-pubertal stage. GATA4-positive Sertoli cells and Leydig cells located in the interstitial space were not immunolabelled with VASA. These results suggest that VASA can be utilized as a molecular marker for germ cells of stallions at pre-pubertal and post-pubertal stages. Interestingly, immunolabelling intensity was significantly higher in pachytene spermatocytes compared to spermatogonia and round spermatid. VASA antibody was also effective for staining of single germ cell preparations. In conclusion, VASA protein expression can be used as a marker for identification of spermatogonia, spermatocytes and round spermatids in testicular tissues of stallions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.