Restless legs syndrome (RLS) is a sensorimotor disorder accompanied by a strong urge to move the legs and an unpleasant sensation in the legs, and is known to accompany prefrontal dysfunction. Here, we aimed to clarify the neural mechanism of working memory deficits associated with RLS using machine-learning-based analysis of single-trial neural activities. A convolutional neural network classifier was developed to discriminate the cortical activities between RLS patients and normal controls. A layer-wise relevance propagation was applied to the trained classifier in order to determine the critical nodes in the input layer for the output decision, i.e., the time/location of cortical activities discriminating RLS patients and normal controls during working memory tasks. Our method provided high classification accuracy (~94%) from single-trial event-related potentials, which are known to suffer from high inter-trial/inter-subject variation and low signal-to-noise ratio, after strict separation of training/test/validation data according to leave-one-subject-out cross-validation. The determined critical areas overlapped with the cortical substrates of working memory, and the neural activities in these areas were correlated with some significant clinical scores of RLS.
Isolated rapid eye movement sleep behavior disorder (iRBD) is a sleep disorder characterized by dream enactment behavior without any neurological disease and is frequently accompanied by cognitive dysfunction. The purpose of this study was to reveal the spatiotemporal characteristics of abnormal cortical activities underlying cognitive dysfunction in patients with iRBD based on an explainable machine learning approach. A convolutional neural network (CNN) was trained to discriminate the cortical activities of patients with iRBD and normal controls based on three-dimensional input data representing spatiotemporal cortical activities during an attention task. The input nodes critical for classification were determined to reveal the spatiotemporal characteristics of the cortical activities that were most relevant to cognitive impairment in iRBD. The trained classifiers showed high classification accuracy, while the identified critical input nodes were in line with preliminary knowledge of cortical dysfunction associated with iRBD in terms of both spatial location and temporal epoch for relevant cortical information processing for visuospatial attention tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.