Dynamic random access memory (DRAM) is used as the main memory of every modern computer, due to its high density, high speed and efficient memory function. Each DRAM cell consists of one transistor, which functions as a switch for the stored charge, and one capacitor where the positive or negative electric charges corresponding to the digital 1 or 0 data are stored (see Fig. 1a). For successful operation of DRAM, a large cell capacitance ($25 fF) and low leakage current at the operation voltage (10 À7 A cm À2 or 1 fA/ cell) are required because of the following reasons; during the reading operation, stored charge is shared between the cell capacitor and bit line, which is connected to the sense amplifier. In modern DRAMs, hundreds of capacitors are connected to one bit-line so that the bit-line capacitance is usually a few ten times larger than that of the capacitor. Therefore, for a bit-line voltage variation of $100 mV through the charge sharing, which is the sensing margin of the circuit, at least $25 fF of cell capacitance is necessary. [1][2][3] The low leakage current is also essential to ensure a sufficient refresh time.In a traditional Si-based capacitor, the target cell capacitance has been achieved by increasing the surface area of the capacitor (semiconductor-insulator-semiconductor, SIS, in Fig. 1b) while the dielectric thickness is scaled down according to the design rules.[4] More recently, innovations have been made in the component materials. A metal electrode, TiN or Ru, and a dielectric material with a higher-k value (k is the relative dielectric constant) than that of the SiO 2 /Si 3 N 4 layer (k $ 6-7), such as HfO 2 (k $ 25), [5,6] ZrO 2 (k $ 40) [7] and Ta 2 O 5 (k $ 25-60) [8,9] are being explored in giga-bit scale DRAMs (metal-insulator-semiconductor, MIS, and metalinsulator-metal, MIM, in Fig. 1b). The ability of a dielectric film to store charge is conveniently represented by the equivalent oxide thickness (t ox , ¼ t phy  3.9/k, where t phy is the physical thickness of the film). The minimum achievable t ox is $0.7 nm for HfO 2 , ZrO 2 and Ta 2 O 5 which are currently being used in the DRAM industry. However, the technology road map for memory devices states that t ox less than 0.5 nm is necessary for the DRAMs with a design rule of <40 nm.[10] It is also noted that there are no known material solutions to serve this purpose. Reducing the thickness of the dielectric films with k values $20-30 to achieve the required t ox results in unacceptably high leakage currents. Therefore, a dielectric material with a higher k value is in demand. Perovskite-based dielectric films such as SrTiO 3 [11,12] and (Ba,Sr)TiO 3 [13] were reported to exhibit k values of several hundreds and therefore t ox of $0.24 nm is feasible with these materials. [14] However, growth of these films is extremely difficult with the atomiclayer-deposition (ALD) which is a method of choice for the growth of the dielectric films in microelectronic devices. A low thermal budget of 500-600 8C during the deposition and post-de...
We find, using a local density approximation +Hubbard U method, that oxygen vacancies tend to cluster in a linear way in SrTiO(3), a prototypical perovskite oxide, accompanied by strong electron localization at the 3d state of the nearby Ti transition metal ion. The vacancy clustering and the associated electron localization lead to a profound impact on materials properties, e.g., the reduction in free-carrier densities, the appearance of characteristic optical spectra, and the decrease in vacancy mobility. The high stability against the vacancy migration also suggests the physical reality of the vacancy cluster.
By using a first-principles method employing the local density approximation plus Hubbard parameter approach, we study point defects in NiO and interactions between them. The defect states associated with nickel or oxygen vacancies are identified within the energy gap. It is found that nickel vacancies introduce shallow levels in the density of states for the spin direction opposite to that of the removed Ni atom, while the oxygen vacancy creates more localized in-gap states. The interaction profiles between vacancies indicate that specific defect arrangements are strongly favored for both nickel and oxygen vacancies. In the case of nickel vacancies, defect ordering in a simple-cubic style is found to be most stable, leading to a half-metallic behavior. The ionized oxygen vacancies also show a tendency toward clustering, more strongly than neutral pairs. The microscopic origin of vacancy clustering is understood based on overlap integrals between defect states.
Citation Kwak‐Kim J, Park JC, Ahn HK, Kim JW, Gilman‐Sachs A. Immunological modes of pregnancy loss. Am J Reprod Immunol 2010During the implantation period, a significant portion of embryos are lost and eventually less than half of clinically established pregnancies end as full‐term pregnancies without obstetrical complications. A significant portion of these pregnancy losses is associated with immune etiologies, including autoimmune and cellular immune abnormalities. Although an autoimmune etiology such as anti‐phospholipid antibodies (APAs) has been reported to induce placental infarct and thrombosis at maternal–fetal interface, APAs induce inflammatory immune responses as well. Inflammatory immune responses, such as increased proportions of NK cells and Th1/Th2 cell ratios in peripheral blood are related to recurrent pregnancy losses and multiple implantation failures. Systemic and local inflammatory immune responses seem to be induced by activation of Toll‐like receptors with infectious agents, fetal cell debris, or gonadotropin‐releasing hormone agonist, etc. Cellular activation of T and NK cells leads to pro‐inflammatory cytokine storm and consequently, placental infarction and thrombosis. Potential application of anti‐inflammatory therapeutic agents for the prevention of pregnancy losses should be explored further.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.