Proteins localized to various cellular and subcellular membranes play pivotal roles in numerous cellular activities. Accordingly, in eukaryotic cells, the biogenesis of organellar proteins is an essential process requiring their correct localization among various cellular and subcellular membranes. Localization of these proteins is determined by either cotranslational or posttranslational mechanisms, depending on the final destination. However, it is not fully understood how the targeting specificity of membrane proteins is determined in plant cells. Here, we investigate the mechanism by which signal-anchored (SA) proteins are differentially targeted to the endoplasmic reticulum (ER) or endosymbiotic organelles using in vivo targeting, subcellular fractionation, and bioinformatics approaches. For targeting SA proteins to endosymbiotic organelles, the C-terminal positively charged region (CPR) flanking the transmembrane domain (TMD) is necessary but not sufficient. The hydrophobicity of the TMD in CPR-containing proteins also plays a critical role in determining targeting specificity; TMDs with a hydrophobicity value >0.4 on the Wimley and White scale are targeted primarily to the ER, whereas TMDs with lower values are targeted to endosymbiotic organelles. Based on these data, we propose that the CPR and the hydrophobicity of the TMD play a critical role in determining the targeting specificity between the ER and endosymbiotic organelles.
Twenty-three (88.5%) of the 26 BS patients involved in this study had CLCNKB mutations. The p.W610X mutation and large deletion were two common types of mutations in CLCNKB. The clinical manifestations of BS III were heterogeneous without a genotype-phenotype correlation, typically manifesting cBS phenotype but also aBS or mixed Bartter-Gitelman phenotypes. The molecular diagnostic steps for patients with BS in our population should be designed taking these peculiar genotype distributions into consideration, and a new more clinically relevant classification including BS and Gitelman syndrome is required.
Oral steroid treatment is the first line of therapy for childhood nephrotic syndrome (NS). Nonetheless, some patients are resistant to this treatment. Many efforts have been made to explain the differences in the response to steroid treatment in patients with NS based on the genetic background. We have investigated single nucleotide polymorphisms of the MDR1 [C1236T (rs1128503), G2677T/A (rs2032582), and C3435T (rs1045642)] and MIF (G-173C, rs755622) genes in 170 children with NS. Of these children, 69 (40.6%) were initial steroid non-responders, and 23 (13.5% of total) developed chronic kidney disease. Renal biopsy findings, which were available for 101 patients, showed that 35 patients had minimal change lesion and 66 had focal segmental glomerulosclerosis. The frequencies of the MDR1 1236 CC (18.8 vs 7.2%) or TC (53.5 vs 43.5%) genotype and C allele (45.5 vs 29.0%) were significantly higher in the initial steroid responders than in the non-responders. Analysis of MDR1 three-marker haplotypes revealed that the frequency of the TGC haplotype was significantly lower in the initial steroid responders than in the non-responders (15.8 vs 29.0%). There was no association between the MIF G-173C polymorphism and clinical parameters, renal histological findings, and steroid responsiveness. These data suggest that the initial steroid response in children with NS may be influenced by genetic variations in the MDR1 gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.