To overcome the limitation of the conventional single axis-strain sensor, we demonstrate a multidimensional strain sensor composed of two layers of prestrained silver nanowire percolation network with decoupled and polarized electrical response in principal and perpendicular directional strain. The information on strain vector is successfully measured up to 35% maximum strain with large gauge factor (>20). The potential of the proposed sensor as a versatile wearable device has been further confirmed.
Salinity is a major abiotic stressor that limits the growth, development, and reproduction of plants. Our previous metabolic analysis of high salt-adapted callus suspension cell cultures from Arabidopsis roots indicated that physical reinforcement of the cell wall is an important step in adaptation to saline conditions. Compared to normal cells, salt-adapted cells exhibit an increased lignin content and thickened cell wall. In this study, we investigated not only the lignin biosynthesis gene expression patterns in salt-adapted cells, but also the effects of a loss-of-function of CCoAOMT1, which plays a critical role in the lignin biosynthesis pathway, on plant responses to high-salt stress. Quantitative realtime PCR analysis revealed higher mRNA levels of genes involved in lignin biosynthesis, including CCoAOMT1, 4CL1, 4CL2, COMT, PAL1, PAL2, and AtPrx52, in salt-adapted cells relative to normal cells, which suggests activation of the lignin biosynthesis pathway in salt-adapted cells. Moreover, plants harboring the CCoAOMT1 mutants, ccoaomt1-1 and ccoaomt1-2, were phenotypically hypersensitive to salt stress. Our study has provided molecular and genetic evidence indicating the importance of enhanced lignin accumulation in the plant cell wall during the responses to salt stress.
These findings suggest that DNA methylation may be important for downregulation of CFTR gene expression in lung cancer. Promoter hypermethylation of the CFTR gene may be an important prognostic factor in younger patients with NSCLC.
Abstract. microRNAs (miRNAs) may function as oncogenes or tumor-suppressor genes depending on the targets that are regulated. Enhancer of zeste homolog 2 (EZH2) is the target of miR-101 and a member of the polycomb repressive complex 2, which is involved in the methylation of histone H3 at lysine 27 (H3K27). Therefore, we aimed to ascertain whether or not the overexpression of miR-101 inhibits invasion of lung cancer through regulation of EZH2. In this study, the expression of miR-101 was down-regulated and the expression of EZH2 was up-regulated in lung cancer. Global methylation of H3K27 was higher in metastatic lung cancer than in early lung cancer lesions. Overexpression of miR-101 induced a marked reduction in EZH2 mRNA levels in several lung cancer cell lines. A reduction in the trimethyl H3K27 histone mark was detected at the CDH1 promoter in miR-101 precursor-transfected cells. Moreover, the expression of CDH1 and MMP-2 was reversed by miR-101 transfection. Therefore, the overexpression of miR-101 inhibits the invasiveness of lung cancer. miR-101 may be a potent tumor suppressor by altering chromatin structure through repression of EZH2 and may be a potential therapeutic tool for patients with lung cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.