Despite the ongoing spread of MERS, there is limited knowledge of the factors affecting its severity and outcomes. We analyzed clinical data and specimens from fourteen MERS patients treated in a hospital who collectively represent a wide spectrum of disease severity, ranging from mild febrile illness to fatal pneumonia, and classified the patients into four groups based on severity and mortality. Comparative and kinetic analyses revealed that high viral loads, weak antibody responses, and lymphopenia accompanying thrombocytopenia were associated with disease mortality, whereas persistent and gradual increases in lymphocyte responses might be required for effective immunity against MERS-CoV infection. Leukocytosis, primarily due to increased neutrophils and monocytes, was generally observed in more severe and fatal cases. The blood levels of cytokines such as IL-10, IL-15, TGF-β, and EGF were either positively or negatively correlated with disease mortality. Robust induction of various chemokines with differential kinetics was more prominent in patients that recovered from pneumonia than in patients with mild febrile illness or deceased patients. The correlation of the virological and immunological responses with disease severity and mortality, as well as their responses to current antiviral therapy, may have prognostic significance during the early phase of MERS.
Notch1 specifically upregulates expression of the cytokine interferon‐γ in peripheral T cells through activation of NF‐κB. However, how Notch mediates NF‐κB activation remains unclear. Here, we examined the temporal relationship between Notch signaling and NF‐κB induction during T‐cell activation. NF‐κB activation occurs within minutes of T‐cell receptor (TCR) engagement and this activation is sustained for at least 48 h following TCR signaling. We used γ‐secretase inhibitor (GSI) to prevent the cleavage and subsequent activation of Notch family members. We demonstrate that GSI blocked the later, sustained NF‐κB activation, but did not affect the initial activation of NF‐κB. Using biochemical approaches, as well as confocal microscopy, we show that the intracellular domain of Notch1 (N1IC) directly interacts with NF‐κB and competes with IκBα, leading to retention of NF‐κB in the nucleus. Additionally, we show that N1IC can directly regulate IFN‐γ expression through complexes formed on the IFN‐γ promoter. Taken together, these data suggest that there are two ‘waves’ of NF‐κB activation: an initial, Notch‐independent phase, and a later, sustained activation of NF‐κB, which is Notch dependent.
Almost 100% internal quantum efficiency (IQE) is achieved with a green fluorescent organic light-emitting diode (OLED) exhibiting 30% external quantum efficiency (EQE). The OLED comprises an exciplex-forming co-host system doped with a fluorescent dye that has a strong delayed fluorescence as a result of reverse intersystem crossing (RISC); the exciplex-forming co-hosts stimulate energy transfer and charge balance in the system. The orientation of the transition dipole moment of the fluorescent dye is shown to have an influence on the EQE of the device.
Summary
T follicular helper (TFH) and Th1 cells generated after viral infections are critical for the control of infection and the development of immunological memory. However, the mechanisms that govern the differentiation and maintenance of these two distinct lineages during viral infection remain unclear. Here, we found that viral-specific TFH and Th1 cells showed reciprocal expression of the transcriptions factors TCF1 and Blimp1 starting early after infection, even before the differential expression of the canonical TFH marker CXCR5. Furthermore, TCF1 was intrinsically required for the TFH-cell response to viral infection; in the absence of TCF1, the TFH-cell response was severely compromised and the remaining TCF1 deficient TFH cells failed to maintain TFH-associated transcriptional and metabolic signatures, which were distinct from those in Th1 cells. Mechanistically, TCF1 functioned through forming negative feedback loops with IL-2 and Blimp1. Our findings demonstrate an essential role of TCF1 in TFH-cell responses to viral infection.
Blue-phosphorescent organic light-emitting diodes (OLEDs) with 34.1% external quantum efficiency (EQE) and 79.6 lm W(-1) are demonstrated using a hole-transporting layer and electron-transporting layer with low refractive index values. Using optical simulations, it is predicted that outcoupling efficiencies with EQEs > 60% can be achieved if organic layers with a refractive index of 1.5 are used for OLEDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.