Trichomonas vaginalis (Tv), a protozoan parasite causing sexually-transmitted disease, has been detected in tissue of prostatitis, benign prostatic hyperplasia (BPH) and prostate cancer (PCa). IL-6, a mediator of chronic inflammation, induces the progression of prostate cancer, and influences the polarization of M2 macrophages, which are the main tumor-associated macrophages. We investigated whether IL-6 produced by human prostate epithelial cells stimulated with Tv induces the M2 polarization of THP-1-derived macrophages, which in turn promotes the progression of PCa. Conditioned medium was prepared from Tvinfected (TCM) and uninfected (CM) prostate epithelial cells (RWPE-1). Thereafter conditioned medium was prepared from macrophages after incubation with CM (M-CM) or TCM (M-TCM). RWPE-1 cells infected with Tv produced IL-6 and chemokines such as CCL2 and CXCL8. When human macrophages were treated with conditioned medium of RWPE-1 cells co-cultured with Tv (TCM), they became polarized to M2-like macrophages as indicated by the production of IL-10 and TGF-β, and the expression of CD36 and arginase-1, which are M2 macrophage markers. Moreover, proliferation of the M2-like macrophages was also increased by TCM. Blockade of IL-6 signaling with IL-6 receptor antibody and JAK inhibitor (Ruxolitinib) inhibited M2 polarization of THP-1-derived macrophages and proliferation of the macrophages. To assess the effect of crosstalk between macrophages and prostate epithelial cells inflamed by Tv infection on the growth of prostate cancer (PCa) cells, PC3, DU145 and LNCaP cells were treated with conditioned medium from THP-1-derived macrophages stimulated with TCM (M-TCM). Proliferation and migration of the PCa cells were significantly increased by the M-TCM. Our findings suggest that IL-6 produced in response to Tv infection of the prostate has an important effect on the tumor microenvironment by promoting progression of PCa cells following induction of M2 macrophage polarization.
Neutrophils are the predominant inflammatory cells found in the vaginal discharge of patients with Trichomonas vaginalis infection. However, it is not known whether neutrophil apoptosis is induced by live T. vaginalis. Therefore, we examined whether T. vaginalis can influence neutrophil apoptosis, and also whether caspase-3 and the Bcl-2 family members are involved in the apoptosis. Thus, human neutrophils were incubated with live T. vaginalis and neutrophil apoptosis was evaluated by Giemsa, annexin V-PI, and DiOC6 stainings. The neutrophil apoptosis was significantly higher in those incubated with T. vaginalis than in the control group. When trichomonads were pre-treated with mAb to AP65 (adhesin protein), or when trophozoites were separated from neutrophils using a Transwell chamber, neutrophil apoptosis was significantly reduced. The activation of caspase-3 was evident in neutrophils undergoing spontaneous apoptosis but was markedly enhanced during T. vaginalis-induced apoptosis. Moreover, the inhibition of caspase-3 effectively reduced T. vaginalis-induced apoptosis. Trichomonad-induced apoptosis was also associated with reduced expression of the neutrophil anti-apoptotic protein, Mcl-1. These results indicate that T. vaginalis alters Mcl-1 expression and caspase-3 activation, thereby inducing apoptosis of human neutrophils.
Mast cells have been reported to be predominant in the vaginal smears of patients infected with T. vaginalis. In this study, we investigated whether T. vaginalis could induce mast cells to migrate and to produce TNF-α and histamine. Rat peritoneal mast cells (RPMC), a primary mast cell, were used for the study. T. vaginalis induced an increase in chemotactic migration of the mast cells toward excretory and secretory product (ESP) of T. vaginalis, and the mast cells activated with T. vaginalis showed an increased release of histamine and TNF-α. Therefore, mast cells may be involved in the inflammatory response caused by T. vaginalis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.