Chrysoeriol is a flavonoid that has diverse biological properties, including antioxidation, anti-inflammation, chemoprevention and immunomodulation. Despite its reported anti-inflammatory activity, the exact underlying molecular mechanism has not yet been elucidated. In the current study, the anti-inflammatory mechanism of chrysoeriol involving lipopolysaccharide (LPS)-induced cyclooxygenase-2 (COX-2) and its upstream signaling molecules was investigated in RAW 264.7 cells. The mechanism was evaluated via ELISA and western blotting assays. Chrysoeriol significantly inhibited LPS-induced prostaglandin E 2 (PGE 2 ) production and COX-2 expression without cytotoxicity. Activated transcription factors that further induced the inflammation response, including nuclear factor (NF)-κB and activator protein-1 (AP-1), were significantly attenuated by chrysoeriol treatment. Furthermore, LPS-induced phosphorylation levels of phosphoinositide-3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK) were abolished by chrysoeriol treatment, which was confirmed by selective inhibitors. Additionally, chrysoeriol significantly inhibited the LPS-induced activation of adaptor molecules in RAW 264.7 cells, including toll-like receptor 4 (TLR4) and myeloid differentiation primary response 88. Therefore, the results suggested that chrysoeriol ameliorates TLR4-mediated inflammatory responses by inhibiting NF-κB and AP-1 activation as well as suppressing PI3K/Akt and MAPK phosphorylation in LPS-stimulated RAW 264.7 cells.
Gingival inflammation is one of the main causes that can be related to various periodontal diseases. Human gingival fibroblast (HGF) is the major constituent in periodontal connective tissue and secretes various inflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), upon lipopolysaccharide stimulation. This study is aimed at investigating the anti-inflammatory mechanism of chlorogenic acid (CGA) on Porphyromonas gingivalis LPS- (LPS-PG-) stimulated HGF-1 cells. The concentration of NO and PGE2, as well as their responsible enzymes, inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2), was analyzed by Griess reaction, ELISA, and western blot analysis. LPS-PG sharply elevated the production and protein expression of inflammatory mediators, which were significantly attenuated by CGA treatment in a dose-dependent manner. CGA treatment also suppressed activation of Toll-like receptor 4 (TLR4)/myeloid differentiation primary response gene 88 (MyD88) and nuclear factor- (NF-) κB in LPS-PG-stimulated HGF-1 cells. Furthermore, LPS-PG-induced phosphorylation of extracellular regulated kinase (ERK) and Akt was abolished by CGA treatment, while c-Jun N-terminal kinase (JNK) and p38 did not have any effect. Consequently, these results suggest that CGA ameliorates LPS-PG-induced inflammatory responses by attenuating TLR4/MyD88-mediated NF-κB, phosphoinositide-3-kinase (PI3K)/Akt, and MAPK signaling pathways in HGF-1 cells.
Taraxacum officinale has been consumed as a folk remedy due to its diverse physiological activities. This study aimed to investigate the antioxidative potential of T. officinale water extract (TOWE) and ethanol extract (TOEE) against oxidative stress and compare their molecular mechanism via the induction of heme oxygenase-1 (HO-1) in RAW 264.7 cells. The antioxidative activity was evaluated through the radical scavenging assay, the cytoprotection assay against oxidative damage, and Western blot analysis. Both extracts dose-dependently induced HO-1 expression without any cytotoxicity in accordance with the activation of a transcription factor, nuclear factor-erythroid 2 p45-related factor 2 (Nrf2). In addition, TOWE induced HO-1 expression through the phosphorylation of phosphoinositide 3-kinase (PI3K)/Akt and c-Jun NH2-terminal kinase (JNK), while TOEE activated HO-1 by PI3K/Akt phosphorylation. In order to identify the antioxidative potential by HO-1 induction, oxidative damage-caused cell death by tert-butyl hydroperoxide (t-BHP) was significantly attenuated by both extracts. Their antioxidative potential was confirmed by HO-1 selective inducer and inhibitor, cobalt protoporphyrin (CoPP), and tin protoporphyrin (SnPP), respectively. These results indicate that TOWE and TOEE potently alleviated oxidative damage via the induction of Nrf2/MAPK/PI3K mediated HO-1 induction in RAW 264.7 cells.
Hepatocellular carcinoma (HCC), a major type of hepatoma, is associated with high recurrence and mortality because of its uncontrolled metastatic feature. Silymarin is a polyphenolic flavonoid from Silybum marianun (milk thistle) and exhibits anti-carcinogenic activity through modulation of the epithelial-mesenchymal transition (EMT) in several cancer cells. In this study, the inhibitory mechanism of silymarin against migration and invasion was investigated in the Huh7 HCC cell line.Wound healing and in vitro invasion assays were conducted to examine the effects of silymarin on migration and invasion. Western blot analysis was also applied to evaluate the inhibitory effects of silymarin on the EMT-related genes and their upstream signaling molecules. Silymarin inhibited the migratory and invasive activities of Huh7 cells. In addition, silymarin attenuated the protein expression levels of vimentin and matrix metalloproteinase (MMP)-9 as well as their transcription factors, Snail, and nuclear factor (NF)-B, while the expression of E-cadherin was increased by the silymarin treatment. Among the upstream signaling molecules, the phosphorylation of Akt was inhibited by the silymarin treatment, which was confirmed by the selective inhibitor, LY294002. Consequently, silymarin inhibited the invasive and migratory activities in Huh7 cells through the modulation of EMT-related gene expression by the PI3K/Akt signaling pathway, which may have potential as a chemopreventive agent against HCC metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.