Susceptibility weighted imaging (SWI) is a method that uses the intrinsic nature of local magnetic fields to enhance image contrast in order to improve the visibility of various susceptibility sources and to facilitate the diagnostic interpretation. It is also the precursor to the concept of using phase for quantitative susceptibility mapping (QSM). Nowadays, SWI has become a widely used clinical tool to image deoxyhemoglobin in veins, iron deposition in the brain, hemorrhages, microbleeds, and calcification. In this paper, we review the basics of SWI, including data acquisition, data reconstruction and post-processing. In particular, the source of cusp artifacts in phase images is investigated in detail and an improved multi-channel phase data combination algorithm is provided. In addition, we show a few clinical applications of SWI for imaging stroke, traumatic brain injury, carotid vessel wall, siderotic nodules in cirrhotic liver, prostate cancer, prostatic calcification, spinal cord injury and intervertebral disc degeneration. As the clinical applications of SWI continue to expand both in and outside the brain, improving SWI in conjunction with QSM is an important future direction of this technology.
OBJECTIVEGlioblastoma (GBM) remains fatal due to the blood-brain barrier (BBB), which interferes with the delivery of chemotherapeutic agents. The purpose of this study was to evaluate the safety and feasibility of repeated disruption of the BBB (BBBD) with MR-guided focused ultrasound (MRgFUS) in patients with GBM during standard adjuvant temozolomide (TMZ) chemotherapy.METHODSThis study was a prospective, single-center, single-arm study. BBBD with MRgFUS was performed adjacent to the tumor resection margin on the 1st or 2nd day of the adjuvant TMZ chemotherapy at the same targets for 6 cycles. T2*-weighted/gradient echo (GRE) MRI was performed immediately after every sonication trial, and comprehensive MRI was performed at the completion of all sonication sessions. Radiological, laboratory, and clinical evaluations were performed 2 days before each planned BBBD.RESULTSFrom September 2018, 6 patients underwent 145 BBBD trials at various locations in the brain. The authors observed gadolinium-enhancing spots at the site of BBBD on T1-weighted MRI in 131 trials (90.3%) and 93 trials (64.1%) showed similar spots on T2*-weighted/GRE MRI. When the 2 sequences were combined, BBBD was observed in 134 targets (92.4%). The spots disappeared on follow-up MRI. There were no imaging changes related to BBBD and no clinical adverse effects during the 6 cycles.CONCLUSIONSThis study is the first in which repetitive MRgFUS was performed at the same targets with a standard chemotherapy protocol for malignant brain tumor. BBBD with MRgFUS was performed accurately, repeatedly, and safely. Although a longer follow-up period is needed, this study allows for the possibility of other therapeutic agents that previously could not be used due to the BBB.Clinical trial registration no.: NCT03712293 (clinicaltrials.gov)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.