Transcriptional enhanced associate domain (TEAD) transcription factors play important roles during development, cell proliferation, regeneration, and tissue homeostasis. TEAD integrates with and coordinates various signal transduction pathways including Hippo, Wnt, transforming growth factor beta (TGFβ), and epidermal growth factor receptor (EGFR) pathways. TEAD deregulation affects well-established cancer genes such as KRAS, BRAF, LKB1, NF2, and MYC, and its transcriptional output plays an important role in tumor progression, metastasis, cancer metabolism, immunity, and drug resistance. To date, TEADs have been recognized to be key transcription factors of the Hippo pathway. Therefore, most studies are focused on the Hippo kinases and YAP/TAZ, whereas the Hippo-dependent and Hippo-independent regulators and regulations governing TEAD only emerged recently. Deregulation of the TEAD transcriptional output plays important roles in tumor progression and serves as a prognostic biomarker due to high correlation with clinicopathological parameters in human malignancies. In addition, discovering the molecular mechanisms of TEAD, such as post-translational modifications and nucleocytoplasmic shuttling, represents an important means of modulating TEAD transcriptional activity. Collectively, this review highlights the role of TEAD in multistep-tumorigenesis by interacting with upstream oncogenic signaling pathways and controlling downstream target genes, which provides unprecedented insight and rationale into developing TEAD-targeted anticancer therapeutics.
The transcription of inflammatory genes is an essential step in host defense activation. Here, we show that cellular nucleic acid-binding protein (CNBP) acts as a transcription regulator that is required for activating the innate immune response. We identified specific CNBP-binding motifs present in the promoter region of sustained inflammatory cytokines, thus, directly inducing the expression of target genes. In particular, lipopolysaccharide (LPS) induced cnbp expression through an NF-κB-dependent manner and a positive autoregulatory mechanism, which enables prolonged il-6 gene expression. This event depends strictly on LPS-induced CNBP nuclear translocation through phosphorylation-mediated dimerization. Consequently, cnbp-depleted zebrafish are highly susceptible to Shigella flexneri infection in vivo. Collectively, these observations identify CNBP as a key transcriptional regulator required for activating and maintaining the immune response.
Background Although metastasis is the foremost cause of cancer-related death, a specialized mechanism that reprograms anchorage dependency of solid tumor cells into circulating tumor cells (CTCs) during metastatic dissemination remains a critical area of challenge. Methods We analyzed blood cell-specific transcripts and selected key Adherent-to-Suspension Transition (AST) factors that are competent to reprogram anchorage dependency of adherent cells into suspension cells in an inducible and reversible manner. The mechanisms of AST were evaluated by a series of in vitro and in vivo assays. Paired samples of primary tumors, CTCs, and metastatic tumors were collected from breast cancer and melanoma mouse xenograft models and patients with de novo metastasis. Analyses of single-cell RNA sequencing (scRNA-seq) and tissue staining were performed to validate the role of AST factors in CTCs. Loss-of-function experiments were performed by shRNA knockdown, gene editing, and pharmacological inhibition to block metastasis and prolong survival. Results We discovered a biological phenomenon referred to as AST that reprograms adherent cells into suspension cells via defined hematopoietic transcriptional regulators, which are hijacked by solid tumor cells to disseminate into CTCs. Induction of AST in adherent cells 1) suppress global integrin/ECM gene expression via Hippo-YAP/TEAD inhibition to evoke spontaneous cell–matrix dissociation and 2) upregulate globin genes that prevent oxidative stress to acquire anoikis resistance, in the absence of lineage differentiation. During dissemination, we uncover the critical roles of AST factors in CTCs derived from patients with de novo metastasis and mouse models. Pharmacological blockade of AST factors via thalidomide derivatives in breast cancer and melanoma cells abrogated CTC formation and suppressed lung metastases without affecting the primary tumor growth. Conclusion We demonstrate that suspension cells can directly arise from adherent cells by the addition of defined hematopoietic factors that confer metastatic traits. Furthermore, our findings expand the prevailing cancer treatment paradigm toward direct intervention within the metastatic spread of cancer.
The WD40-repeat protein serine/threonine kinase receptor-associated protein (STRAP) is involved in the regulation of several biological processes, including cell proliferation and apoptosis, in response to various stresses. Here, we show that STRAP is a new scaffold protein that functions in Toll-like receptor (TLR)-mediated immune responses. STRAP specifically binds transforming growth factor β-activated kinase 1 (TAK1) and IκB kinase alpha (IKKα) along with nuclear factor-κB (NF-κB) subunit p65, leading to enhanced association between TAK1, IKKα, and p65, and subsequent facilitation of p65 phosphorylation and nuclear translocation. Consequently, the depletion of STRAP severely impairs interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and IL-1β production, whereas its overexpression causes a significant increase in the secretion of these pro-inflammatory cytokines by TLR2 or TLR4 agonist-stimulated macrophages. Notably, STRAP translocates to the nucleus and subsequently binds to NF-κB at later times after lipopolysaccharide (LPS) stimulation, resulting in prolonged IL-6 mRNA production. Moreover, the C-terminal region of STRAP is essential for its functional activity in facilitating IL-6 production. Collectively, these observations suggest that STRAP acts as a scaffold protein that positively contributes to innate host defenses against pathogen infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.