The distribution and abundance of coastal fish species in Asan Bay, Korea, were estimated from hydroacoustic survey and net catches. Acoustic data were collected with 38 and 200 kHz from July to October of 2012, and converted to the nautical area scattering coefficient (NASC, m 2 /mile 2 ) for 0.25 n•mile along ten transects. Japanese anchovy Engraulis japonicus was the dominant specie in the net catches. The virtual echogram technique was used to distinguish E. japonicus from other species based on the differences in the mean volume backscattering strength (△MVBS) at 38 and 200 kHz. Engraulis japonicus and other fishes are mainly distributed in the center channel and outer part of Asan Bay. E. japonicus tends to move from inner to outer Asan Bay in summer and fall. From NASC data, the target strength and length−weight function of E. japonicus and other fishes were used to estimate the E. japonicus stock at 24.1−93.3 tons, and other fish at 40.6−88.4 tons from July to October 2012. The estimated anchovy biomass compared well with the cumulative catch weight from stow net catches. The hydroacoustic method offers an approach to understanding spatial/temporal structure and estimating the biomass of fish aggregations in coastal areas.
To study the absorption characteristics of rhodopsin, a dim-light photoreceptor, in chub mackerel (Scomber japonicus) and the relationship between light wavelengths on the photoresponse, the rod opsin gene was cloned into an expression vector, pMT4. Recombinant opsin was transiently expressed in COS-1 cells and reconstituted with 11-cis-retinal. Cells containing the regenerated rhodopsin were solubilized and subjected to UV/Vis spectroscopic analysis in the dark and upon illumination. Difference spectra from the lysates indicated an absorption maximum of mackerel rhodopsin around 500 nm. Four types of light-emitting diode (LED) modules with different wavelengths (red, peak 627 nm; cyan, 505 nm; blue, 442 nm; white, 447 + 560 nm) were constructed to examine their effects on the photoresponse in chub mackerel. Behavioral responses of the mackerels, including speed and frequencies acclimated in the dark and upon LED illumination, were analyzed using an underwater acoustic camera. Compared to an average speed of 22.25 ± 1.57 cm/s of mackerel movement in the dark, speed increased to 22.97 ± 0.29, 24.66 ± 1.06, 26.28 ± 2.28, and 25.19 ± 1.91 cm/s upon exposure to red, blue, cyan, and white LEDs, respectively. There were increases of 103.48 ± 1.58, 109.37 ± 5.29, 118.48 ± 10.82, and 109.43 ± 3.92 %, respectively, in the relative speed of the fishes upon illumination with red, blue, cyan, and white LEDs compared with that in the dark (set at 100 %). Similar rate of wavelength-dependent responses was observed in a frequency analysis. These results indicate that an LED emitting a peak wavelength close to an absorption maximum of rhodopsin is more effective at eliciting a response to light.
Physical properties such as sound speed contrast (h) and density contrast (g) of the interested target are key parameters to understand acoustic characteristics by using theoretical scattering models. The density and sound speed of moon jellyfish (common jellyfish, Aurelia aurita s.l.) were measured. Sound speed contrast (h) was measured from travel time difference (time-of-flight method) of an acoustic signal in a water tank for APOP studies (Acoustic Properties Of zooplankton). Density contrast (g) was measured by the displacement volume and wet weight (dual-density method). The sound speed remained almost constant as the moon jellyfish increased in bell length. The mean values ± standard deviation of h and g were 1.0005 ± 0.0012 and 0.9808 ± 0.0195), respectively. These results will provide important input for use in theoretical scattering models for estimating the acoustic target strength of jellyfish.
Acoustic side-aspect target strength (TS) of living Japanese anchovy (Engraulis japonicus) was measured at 120kHz during in situ experiments. The data were collected by lowering and horizontally projecting the splitbeam transducer into the anchovy school. For analysis and interpretation of the side-aspect TS data, acoustic theoretical model, based on the fish morphology, and dorsal-aspect TS data were used. Total length of the anchovy ranged from 6.6 to 12.8cm (mean length 9.3cm). The side-aspect TS distributed between 40 and 55dB, has an obvious length dependency. The mean side-aspect TS of the anchovy was 47.8dB, and the TS was about 2dB higher than mean TS generated from dorsal-aspect measurements. With reference to maximum TS, the results of the side-aspect TS were distributed within the range of the theoretical and dorsal-aspect TS. Apparently these tendency indicates that side-aspect TS measured from the study is useful data. These in situ measurements of side-aspect TS can be applied to improve acoustic detection and estimates of the anchovy, and is necessary to measure with a various frequency and length for making enhance data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.