Toxic doping gases are usually used to produce hydrogenated amorphous silicon (a-Si:H) layers in thin-film solar cells (TFSCs). Hence, an alternative structure that avoids the use of toxic gases is desirable. In this work, we replaced both the p-type-a-Si:H and n-type-a-Si:H layers simultaneously in a normal TFSC to form a structure that is dopant-free. Molybdenum oxide (MoO3) and lithium fluoride were used as the p-type and n-type layers, respectively. The effects of the deposition method and the thickness of the MoO3 layer on the device performance were investigated. The power-conversion efficiency of the optimized hybrid solar cell reached a maximum of 7.08%, which is remarkable considering the novel structure of the dopant-free devices. The light stability of the devices with and without MoO3 was also compared: the light stability of the device with MoO3 was found to be much better than that of the device without MoO3 and with p-i-n Si layers. This was ascribed to the insignificant number of defect sites generated by the nondoping elements, which led to a less contaminated, more compact, and smoother oxide surface, resulting in an increase in the electron lifetime and improved light stability. This work opens up a new direction toward the development of a truly dopant-free device that does not involve the use of toxic gases during fabrication and provides the potential for further enhancement of the efficiency of future dopant-free solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.