Dust transport to the tropical/subtropical northwestern Pacific over the past 600 kyr was investigated using radiogenic isotopes ( 87 Sr/ 86 Sr and ε Nd ), together with the clay mineral composition, of eolian dust preserved in a sediment core obtained from the Philippine Sea (12°30′N, 134°60′E). These data revealed the influence of two prevailing dust sources, namely, the Asian deserts and nearby volcanic arcs (e.g., the Luzon Arc), with average contributions of around 70% and 30%, respectively, from each. The clay mineral composition of the core resembled dust from the central Asian deserts (CADs; e.g., the Taklimakan Desert) as in the north-central Pacific, but published aerosol data collected near the study site during winter/spring have the mineralogical signature of dust originating from the East Asian deserts (EADs). These data indicate that the relative contribution of EAD dust increases with the northeasterly surface winds associated with the East Asian Winter Monsoon (EAWM) during winter/spring, but the Prevailing Westerlies and Trade Winds that carry dust from the CADs is the dominant transport agent in the overall dust budget of the study site. The results of this study contradict the prevailing view that direct dust transport by the EAWM winds in spring dominates the annual flux of eolian dust in the northwest Pacific.
Time-series sediment traps were deployed on the Chukchi Sea and East Siberian Sea slopes from August 2017 to August 2018 with the aim of elucidating the temporal and spatial variations in particle fluxes and identifying the main processes affecting those variations. Particle fluxes showed a typical seasonal pattern, with high values in summer and low values in other seasons, and a large inter-annual variation was observed only on the East Siberian Sea slope, where particle fluxes were one order of magnitude higher in early August 2018 than in late August 2017. This large inter-annual variation in particle flux resulted from the episodic intrusion of nutrient-enriched shelf water in the East Siberian Sea, which enhanced biological production at the surface and particle fluxes. The Chukchi Sea slope was influenced by the inflow of Anadyr Water, with high salinity and high nutrient concentrations, which had little annual variability. Therefore, particle flux showed little inter-annual variation on the Chukchi Sea slope. Under-ice phytoplankton blooms were observed in both the Chukchi Sea and East Siberian Sea slopes, and increases in particulate organic carbon (POC) flux and the C:N ratio under the sea ice were related to transparent exopolymer (TEP) production by ice algae. On the East Siberian Sea slope, particle fluxes increased slightly from 115 to 335 m, indicating lateral transport of suspended particulate matter; POC and lithogenic particles may be laterally transported to the slope as nutrient-rich shelf waters flowed from the East Siberian Sea to the Makarov Basin. Annual POC fluxes were 2.3 and 2.0 g C m–2 year–1 at 115 and 335 m, respectively, on the East Siberian Sea slope and was 2.1 g C m–2 year–1 at 325 m on the Chukchi Sea slope. Annual POC fluxes were higher on the Chukchi Sea and East Siberian Sea slopes than in Arctic basins, lower than on Arctic shelves, and generally similar to those on western Arctic slopes.
and normal conditions were observed in the remaining periods. The normal period was divided into two seasons based on the cycles of environmental properties in the surface ocean: cold (December-May) and warm (JuneNovember) season. During the normal period, the total mass flux was 1.7 times higher in the cold season than in the warm season. Particularly, the CaCO 3 flux was nearly three times higher in the cold season. The enhanced CaCO 3 flux in the cold season was attributed to an increased foraminiferal flux, which may have influenced the seasonal variability of the total mass flux at the KOMO station. The enhanced foraminiferal flux during the cold season may have been caused by the environmental changes of the surface ocean in response to wind-driven mixing resulting in supply of subsurface nutrient-enriched water. Particle fluxes during the weak El Niño period were lower by 30% than those during the normal period, which was consistent with previous findings in the central and eastern equatorial Pacific.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.