Organic thermally activated delayed fluorescence (TADF) materials have attracted significant research interest in the field of organic electronics because of their inherent advantage of 100% exciton utilization capability in organic light‐emitting diodes (OLEDs) without the use of noble metals. However, despite their high internal electroluminescence quantum efficiencies approaching unity, broad emission spectra with sizable full width at half maxima (FWHM; 60–100 nm) present a critical issue that must be solved for their application in ultrahigh‐definition OLED displays. Recently, a new paradigm of TADF materials featuring the multiple resonance (MR) effect based on heteroatom‐doped polycyclic aromatic frameworks, referred to as MR‐TADF materials, has emerged and garnered considerable research interest owing to their remarkable features of efficient narrowband emissions with extremely small FWHMs (≤30 nm). Currently, MR‐TADF materials occupy a prominent position in the cutting‐edge research on organic light‐emitting materials from both chemical and physical perspectives. This review article focuses on recent progress in narrowband emissive MR‐TADF systems from the perspective of molecular design, photophysical properties, and electroluminescence performance in OLEDs. The current status and future prospects of this advanced material technology are discussed comprehensively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.