HDG method has been widely used as an effective numerical technique to obtain physically relevant solutions for PDE. In a practical setting, PDE comes with nonlinear coefficients. Hence, it is inevitable to consider how to obtain an approximate solution for PDE with nonlinear coefficients. Research on using HDG method for PDE with nonlinear coefficients has been conducted along with results obtained from computer simulations. However, error analysis on HDG method for such settings has been limited. In this research, we give error estimations of the hybridizable discontinuous Galerkin (HDG) method for parabolic equations with nonlinear coefficients. We first review the classical HDG method and define notions that will be used throughout the paper. Then, we will give bounds for our estimates when nonlinear coefficients obey "Lipschitz" condition. We will then prove our main result that the errors for our estimations are bounded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.