Abstract-The application of power gating to cell-based semicustom design typically calls for customized cell libraries, which incurs substantial engineering efforts. In this brief, a semicustom design methodology for power gated circuits that allows unmodified conventional standard-cell elements is proposed. In particular, a new power network architecture is proposed for cell-based power gating circuits. The impact of body bias on current switch design and the layout method of current switch for flexible placement are investigated. The circuit elements that supplement cell-based power gating design are then discussed, including output interface circuits and state retention flip-flops. The proposed methodology is applied to ISCAS benchmark circuits and to a commercial Viterbi decoder with 0.18-m CMOS technology.
Abstract-Power gating is widely accepted as an efficient way to suppress subthreshold leakage current. Yet, it suffers from gate leakage current, which grows very fast with scaling down of gate oxide. We try to understand the sources of leakage current in power gating circuits and show that input MOSFETs play a crucial role in determining total gate leakage current. It is also shown that the choice of a current switch in terms of polarity, threshold voltage, and size has a significant impact on total leakage current. From the observation of the importance of input MOSFETs, we propose the power optimization of power gating circuits through input control.
Power gating has been widely used to reduce subthreshold leakage. However, its efficiency degrades very fast with technology scaling due to the gate leakage of circuits specific to power gating, such as storage elements and output interface circuits with a data-retention capability. A new scheme called supply switching with ground collapse is proposed to control both gate and subthreshold leakage in nanometer-scale CMOS circuits. Compared to power gating, the leakage is cut by a factor of 6.3 with 65nm and 8.6 with 45nm technology. Various issues in implementing the proposed scheme using standardcell elements are addressed, from RTL to layout. The proposed design flow is demonstrated on a commercial design with 90nm technology, and the leakage saving by a factor of 32 is observed with 3% and 6% of increase in area and wirelength, respectively.
Power gating has been widely used to reduce subthreshold leakage. However, the efficiency of power gating degrades very fast with technology scaling, which we demonstrate by experiment. This is due to the gate leakage of circuits specific to power gating, such as storage elements and output interface circuits with a data-retention capability. A new scheme called supply switching with ground collapse is proposed to control both gate and subthreshold leakage in nanometer-scale CMOS circuits. Compared to power gating, the leakage is cut by a factor of 6.3 with 65-nm and 8.6 with 45-nm technology. Various issues in implementing the proposed scheme using standard-cell elements are addressed, from register transfer level to layout. These include the choice of standby supply voltage with circuits that support it, a power network architecture for designs based on standard-cell elements, a current switch design methodology, several circuit elements specific to the proposed scheme, and the design flow that encompasses all the components. The proposed design flow is demonstrated on a commercial design with 90-nm technology, and the leakage saving by a factor of 32 is observed with 3% and 6% of increase in area and wirelength, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.