Metal sulfides are among the most promising materials for a wide variety of technologically relevant applications ranging from energy to environment and beyond. Incidentally, ionic liquids (ILs) have been among the top research subjects for the same applications and also for inorganic materials synthesis. As a result, the exploitation of the peculiar properties of ILs for metal sulfide synthesis could provide attractive new avenues for the generation of new, highly specific metal sulfides for numerous applications. This article therefore describes current developments in metal sulfide nanoparticle synthesis as exemplified by a number of highlight examples. Moreover, the article demonstrates how ILs have been used in metal sulfide synthesis and discusses the benefits of using ILs over more traditional approaches. Finally, the article demonstrates some technological challenges and how ILs could be used to further advance the production and specific property engineering of metal sulfide nanomaterials, again based on a number of selected examples.
The lack of anionic carboxylate ligands on the surface of InP/ZnSe/ZnS quantum dots (QDs), where zinc carboxylate ligands can be converted to carboxylic acid or carboxylate ligands via proton transfer by 1‐octanethiol, is demonstrated. The as‐synthesized QDs initially have an under‐coordinated vacancy surface, which is passivated by solvent ligands such as ethanol and acetone. Upon exposure of 1‐octanethiol to the QD surface, 1‐octanethiol effectively induces the surface binding of anionic carboxylate ligands (derived from zinc carboxylate ligands) by proton transfer, which consequently exchanges ethanol and acetone ligands that bind on the incomplete QD surface. These systematic chemical analyses, such as thermogravimetric analysis‐mass spectrometry and proton nuclear magnetic resonance spectroscopy, directly show the interplay of surface ligands, and it associates with QD light‐emitting diodes (QD‐LEDs). It is believed that this better understanding can lead to industrially feasible QD‐LEDs.
Electron overcharge causes rapid luminescence quenching in the quantum dot (QD) emission layer in QD light–emitting diodes (QD–LEDs), resulting in low device performance. In this paper we describe the application of different aromatic thiol ligands and their influence on device performance as well as their behavior in combination with an electron blocking material (EBM). The three different ligands, 1–octanethiol (OcSH), thiophenol (TP), and phenylbutan–1–thiol (PBSH), were introduced on to InP/ZnSe/ZnS QDs referred to as QD–OcSH, QD–TP, and QD–PBSH. PBSH is in particular applied as a ligand to improve QD solubility and to enhance the charge transport properties synergistically with EBM probably via π–π interaction. We synthesized poly-[N,N-bis[4-(carbazolyl)phenyl]-4-vinylaniline] (PBCTA) and utilized it as an EBM to alleviate excess electrons in the active layer in QD–LEDs. The comparison of the three QD systems in an inverted device structure without the application of PBCTA as an EBM shows the highest efficiency for QD–PBSH. Moreover, when PBCTA is introduced as an EBM in the active layer in combination with QD–PBSH in a conventional device structure, the current efficiency shows a twofold increase compared to the reference device without EBM. These results strongly confirm the role of PBCTA as an EBM that effectively alleviates excess electrons in the active layer, leading to higher device efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.