Confining photons in the smallest possible volume has long been an objective of the nanophotonics community. In this Letter, we propose and demonstrate a three-dimensional (3D) gap-plasmon antenna that enables extreme photon squeezing in a 3D fashion with a modal volume of 1.3 × 10(-7) λ(3) (∼4 × 10 × 10 nm(3)) and an intensity enhancement of 400 000. A three-dimensionally tapered 4 nm air-gap is formed at the center of a complementary nanodiabolo structure by ion-milling 100 nm-thick gold film along all three dimensions using proximal milling techniques. From a 4 nm-gap antenna, a nonlinear second-harmonic signal more than 27 000-times stronger than that from a 100 nm-gap antenna is observed. In addition, scanning cathodoluminescence images confirm unambiguous photon confinement in a resolution-limited area 20 × 20 nm(2) on top of the nano gap.
In the two lines immediately after Eq. ͑9͒ ␣ and  should be read as ␣ϭ1ϩre i(ϩ2) , ϭ1ϩre Ϫi2␦ , and in Eq. ͑10͒ ⌫ 0 should be read asThese corrections do not change the main results of the paper. We thank Stefan Rotter for pointing out the errors.PHYSICAL REVIEW B 67, 129903͑E͒ ͑2003͒
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.