This paper describes the optimal design of a 3-DOF redundant planar parallel kinematic mechanism (PKM) based finishing cut stage to improve the surface roughness of FDM 3D printed sculptures. First, to obtain task-optimized and singularity minimum workspace of the redundant PKM, a weighted grid map based design optimization was applied for a task-optimized workspace without considering the redundancy. For the singularity minimum workspace, the isotropy and manipulability of the end effector of the PKM were carefully modeled under the previously obtained redundancy for optimality. It was confirmed that the workspace size increased by 81.4%, and the internal singularity significantly decreased. To estimate the maximum rated torque and torsional stiffness of all active joints and prevent an undesired end effector displacement of more than 200 μμm, a kinematic stiffness model composed of active and passive kinematic stiffness was derived from the virtual work theorem, and the displacement characteristic at the end effector was examined by applying the reaction force for the PLA surface finishing as an external force acting at the end effector. It was confirmed that the displacement of the end effector of a 1-DOF redundant PKM was not only less than 200 μμm but also decreased from 40.9% to 67.4% compared to a nonredundant actuation.
This paper describes a method for calibrating in-plane center alignment error (IPCA) that occurs when installing the circular motion slide (CMS). In this study, by combini ng the moving carriage of the CMS and the planar PKM (parallel kinematic mechanism) with the machine tool, the small workspace of the PKM is expanded, and the workpiece is placed on the table with the CMS installed is processed through the machine tool. However, to rigidly mount the CMS on the table, the preload between the guide and the support bearings must be adjusted with the eccentric bearing, and in this process, the IPCA occurs. After installing a reflective marker on the PKM, the PKM is slowly rotated along with the ring guide in the way of stop-and-go without the PKM’s own motion. Then, using a machine vision camera installed at the top of the CMS, the IPCA, which is the difference between the actual center position and the nominal center position of the CMS with respect to the camera, can be successfully calibrated through the circular fitting process. Consequently, it was confirmed that the IPCA of 0.37 mm can be successfully identified with the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.