The subthalamic nucleus (STN) controls psychomotor activity and is an efficient therapeutic deep brain stimulation target in Parkinson's disease patients. Despite evidence indicating position-dependent therapeutic effects and distinct functions within the STN, input circuit and cellular profile in the STN remain largely unclear. Using advanced neuroanatomical techniques, we constructed a comprehensive connectivity map of the indirect and hyperdirect pathways in both the mouse and human STN. Our detailed circuit- and cellular-level connectivity revealed a topographically graded organization with three convergent types of indirect and hyperdirect-pathways. Furthermore, we identified two functional types of glutamatergic STN neurons (parvalbumin, PV +/- neurons) segregated with a topographical distribution. Glutamatergic PV+ STN neurons contribute to burst firing. We confirmed synaptic connectivity from indirect and hyperdirect pathways to both PV+ and PV-. These data suggest a complex interplay of information integration within the basal ganglia underlying coordinated movement control and therapeutic effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.