Although many studies have revealed that both air quality and walking activity are dominant contributors to public health, little is known about the relationship between them. Moreover, previous studies on this subject have given little consideration to the day-to-day atmospheric conditions and floating populations of surrounding areas even though most pedestrian count surveys are not conducted on a single day. Against this backdrop, using the 2015 Pedestrian Volume Survey data and quasi-real-time weather, air quality, and transit ridership data in Seoul, this study investigates the relationship between particulate matter (PM)10 and pedestrian street volumes empirically. The regression results suggest that PM10 concentration determines people’s intention to walk and affects the volume of street-level pedestrians. The three regression models, which adopted different spatial aggregation units of air quality, demonstrated that PM10 elasticity of pedestrian volume is the largest in the borough-level (the smallest spatial unit of air quality alert) model. This means that people react to the most accurate information they can access, implying that air quality information should be provided in smaller spatial units for public health. Thus, strengthening air quality warning standards of PM is an effective measure for enhancing public health.
Seoul, a city in South Korea, experiences high particulate matter (PM) levels well above the recommended standards suggested by the World Health Organization. As concerns about public health and everyday lives are being raised, this study investigates the effects of land use on PM levels in Seoul. Specifically, it attempts to identify which land use types increase or decrease PM10 and PM2.5 levels and compare the effects between high and low seasons using two sets of land use classifications: one coarser and the other finer. A series of partial least regression models identifies that industrial land use increases the PM levels in all cases. It is also reported that residential and commercial land uses associated with lower density increase these levels. Other uses, such as green spaces and road, show mixed or unclear effects. The findings of this study may inform planners and policymakers about how they can refine future land use planning and development practice in cities that face similar challenges.
In 1985, San Francisco adopted a downtown plan on ground-level wind currents intended to mitigate the negative effects of wind on pedestrians' perceived comfort in public open spaces. The plan mandates that new buildings in designated parts of the city associated with high density or development potential be designed or adopt measures to not cause wind in excess of accepted comfort levels. This study examines whether and to what degree the plan has successfully shaped an urban form that mitigates wind by comparing the ground-level wind environment in 1985 and 2013. A series of wind tunnel tests found that during San Francisco's windiest season when the westerly winds are prevalent, the overall mean wind speed ratio measured at 318 locations in four areas of the city dropped by 22 percent. However, there still exist many excessively windy places that are associated with specific urban form conditions, including streets oriented to have direct exposure to westerly winds, flat façades on high-rise buildings, and horizontal street walls where building façades align. Recommendations based on the findings include incorporating more tangible guidance on the built form conditions, expanding the plan's reach to cover more parts of the city, and learning from strategies used elsewhere. By evaluating the urban form impacts of a wind mitigation policy that has been in place for 30 years, the research offers insights for other cities that have implemented or plan to adopt similar approach and sheds light on issues related to wind comfort in high-density urban areas.
Bike sharing is increasingly attracting more riders in cities around the world for its benefits regarding the urban environment and public health. The public bike sharing program of Seoul, South Korea, first launched in October 2015, is now widely spread around the city and serves more than 27,000 riders daily. However, concerns are being raised as rising air pollution levels in Seoul, represented by particulate matter (PM) levels, in recent years may negatively discourage citizens from using bike sharing. This study investigates the impact of PM10 and PM2.5 levels on bike sharing use in Seoul and seeks to identify any seasonal differences. A series of negative binomial regression models, which take into account control variables like weather conditions and calendar events, are adopted to empirically measure the impacts. Results show that the PM levels yield statistically significant negative impacts (p < 0.01) on bike sharing use throughout the year. The impacts are particularly stronger in winter and spring, when the PM levels are higher. Findings suggest that PM levels may operate as driving factors for bike sharing use in addition to meteorological conditions like temperature, humidity, and precipitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.