Realizing high average thermoelectric figure of merit (ZTave) and power factor (PFave) has been the utmost task in thermoelectrics. Here the new strategy to independently improve constituent factors in ZT is reported, giving exceptionally high ZTave and PFave in n‐type PbSe. The nonstoichiometric, alloyed composition and resulting defect structures in new Pb1+xSe0.8Te0.2 (x = 0–0.125) system is key to this achievement. First, incorporating excess Pb unusually increases carrier mobility (µH) and concentration (nH) simultaneously in contrast to the general physics rule, thereby raising electrical conductivity (σ). Second, modifying charge scattering mechanism by the authors’ synthesis process boosts a magnitude of Seebeck coefficient (S) above theoretical expectations. Detouring the innate inverse proportionality between nH and µH; and σ and S enables independent control over them and change the typical trend of PF to temperature, giving remarkably high PFave ≈20 µW cm−1 K−2 from 300 to 823 K. The dual incorporation of Te and excess Pb generates unusual antisite Pb at the anionic site and displaced Pb from the ideal position, consequently suppressing lattice thermal conductivity. The best composition exhibits a ZTave of ≈1.2 from 400 to 823 K, one of the highest reported for all n‐type PbQ (Q = chalcogens) materials.
We stabilize multiscale defect structures involving interstitial Cu, displaced Pb and Se atoms from the regular lattice points, dislocations driven by scarce anion vacancies, and nanoscale mosaics driven thermodynamically by...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.