A cycloid speed reducer is one of the rotational speed regulation devices of the machinery. A cycloid speed reducer has an advantage of transmitting high torque, but is known to be unsuitable for high speed rotation. However, it is almost impossible in an analytical method to find a use limit speed when installing such a speed reducer in a 200ton loading transporter. In this research the cycloid reducer was simulated to get its performance depending on friction energy loss in time domain by using by LS-DYNA. The maximum torque of the cycloid speed reducer is 3.5ton-m, so the comparison of analysis results between a case of 60rpm rotation and a case of 162rpm rotation with such a torque showed the following results. In the case of 60rpm rotation, the maximum stress appearing in the RV gear and the pin gear was 463MPa and 507MPa. Lost power due to friction was 50kW; In the case of 162rpm rotation, the maximum stress appearing in the RV gear and the pin gear was 550MPa and 538MPa. Lost power due to friction was 175kW, which was shown to be almost impossible to use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.