In printed electronics, laser ablation is used to repair defective patterns on transparent, flexible, and thin films, using high-power lasers. The distance between the film surface and laser focus is sensitive to changes as the narrow focus depth of the lens is the range of tens of microns. However, a film fixed on a conductive vacuum chuck (CVC) is always curved, owing to chucking bending; thus, laser focusing must be locally performed before ablation. Therefore, this study proposes a non-contact measurement method for the surface flatness of a transparent and thin film, to compensate for laser defocusing in a large area. The surface flatness was obtained using camera-focus points on the porous surface of the CVC. The focus points were interpolated to achieve a smooth and continuous surface flatness for chucking bending. A laser distance sensor was used to verify the surface flatness from the proposed method. The surface flatness was used to inspect the printed patterns, and to perform laser ablation on the film. The proposed method is advantageous for large-area laser ablation and is expected to become indispensable for repairing machines in printed electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.