Ethylene–propylene–diene monomer (EPDM) rubber is one of the rapidly developing synthetic rubbers for use as a gasket material in proton exchange membrane (PEM) fuel cell applications. Despite its excellent elastic and sealing properties, EPDM faces challenges such as molding processability and recycling ability. To overcome these challenges, thermoplastic vulcanizate (TPV), which comprises vulcanized EPDM in polypropylene matrix, was investigated as a gasket material for PEM fuel cell applications. TPV showed better long-term stability in terms of tension and compression set behaviors under accelerated aging conditions than EPDM. Additionally, TPV exhibited significantly higher crosslinking density and surface hardness than EPDM, regardless of the test temperature and aging time. TPV and EPDM showed similar leakage rates for the entire range of test inlet pressure values, regardless of the applied temperature. Therefore, we can conclude that TPV exhibits a similar sealing capability with more stable mechanical properties compared with commercialized EPDM gaskets in terms of He leakage performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.