Many Bacillus species are among the plant growth-promoting rhizobacteria (PGPR) that promote the growth of many different plant species. This study aimed to investigate the effects of Bacillus thuringiensis KNU-07 on the growth of pepper plants and the soil microbiota. We also designed primers specific for the strain KNU-07 to monitor the population in pepper-cultivated soil. Accordingly, a strain-specific primer pair was designed using a database constructed from 16,160 complete bacterial genomes. We employed quantitative PCR (qPCR) to track the abundance of the strain KNU-07 introduced into pepper-cultivated soil using the strain-specific primers. Our study revealed that the strain was found to possess plant growth-promoting (PGP) activities, and it promoted the growth of pepper plants. The soil bacterial community structure due to the application of the PGPR strain was significantly changed after six weeks post-inoculation. In addition, based on qPCR analysis, the population of the introduced strain declined over time. In this study, application of a PGPR strain increased the growth of pepper plants and changed the soil bacterial community structure. The successful results of monitoring of a bacterial strain’s population using a single strain-specific primer pair can provide important information about the quantification of bio-inoculants under non-sterile soil conditions.
The present study investigated the effect of topical application of Epidermidibacterium Keratini (EPI-7) ferment filtrate, which is a postbiotic product of a novel actinobacteria, on skin aging, by performing a prospective randomized split-face clinical study on Asian woman participants. The investigators measured skin biophysical parameters, including skin barrier function, elasticity, and dermal density, and revealed that the application of the EPI-7 ferment filtrate-including test product resulted in significantly higher improvements in barrier function, skin elasticity, and dermal density compared to the placebo group. This study also investigated the influence of EPI-7 ferment filtrate on skin microbiome diversity to access its potential beneficial effects and safety. EPI-7 ferment filtrate increased the abundance of commensal microbes belonging to Cutibacterium, Staphylococcus, Corynebacterium, Streptococcus, Lawsonella, Clostridium, Rothia, Lactobacillus, and Prevotella. The abundance of Cutibacterium was significantly increased along with significant changes in Clostridium and Prevotella abundance. Therefore, EPI-7 postbiotics, which contain the metabolite called orotic acid, ameliorate the skin microbiota linked with the aging phenotype of the skin. This study provides preliminary evidence that postbiotic therapy may affect the signs of skin aging and microbial diversity. To confirm the positive effect of EPI-7 postbiotics and microbial interaction, additional clinical investigations and functional analyses are required.
The skin microbiome, especially the axillary microbiome, consists of odor-causing bacteria that decompose odorless sweat into malodor compounds, which contributes to the formation of body odor. Plant-derived products are a cheap source of bioactive compounds that are common ingredients in cosmetics. Microbial bioconversion of natural products is an ecofriendly and economical method for production of new or improved biologically active compounds. Therefore, in this study, we tested the potential of a Lactobacillus acidophilus KNU-02-mediated bioconverted product (BLC) of Lotus corniculatus seed to reduce axillary malodor and its effect on the associated axillary microbiota. A chemical profile analysis revealed that benzoic acid was the most abundant chemical compound in BLC, which increased following bioconversion. Moreover, BLC treatment was found to reduce the intensity of axillary malodor. We tested the axillary microbiome of 18 study participants, divided equally into BLC and placebo groups, and revealed through 16S rRNA gene sequencing that Staphylococcus, Corynebacterium, and Anaerococcus were the dominant taxa, and some of these taxa were significantly associated with axillary malodor. After one week of BLC treatment, the abundance of Corynebacterium and Anaerococcus, which are associated with well-known odor-related genes that produce volatile fatty acids, had significantly reduced. Likewise, the identified odor-related genes decreased after the application of BLC. BLC treatment enhanced the richness and network density of the axillary microbial community. The placebo group, on the other hand, showed no difference in the microbial richness, odor associated taxa, and predicted functional genes after a week. The results demonstrated that BLC has the potential to reduce the axillary malodor and the associated odor-causing bacteria, which makes BLC a viable deodorant material in cosmetic products.
Functional cosmetics industries using skin microbiome screening and beneficial materials isolated from key microorganisms are receiving increasing attention. Since Epidermidibacterium keratini EPI-7T was first discovered in human skin, previous studies have confirmed that it can produce a new pyrimidine compound, 1,1′-biuracil, having anti-aging effects on human skin. Therefore, we conducted genomic analyses to judge the use value of E. keratini EPI-7T and provide up-to-date information. Whole-genome sequencing analysis of E. keratini EPI-7T was performed to generate new complete genome and annotation information. E. keratini EPI-7T genome was subjected to comparative genomic analysis with a group of closely-related strains and skin flora strains through bioinformatic analysis. Furthermore, based on annotation information, we explored metabolic pathways for valuable substances that can be used in functional cosmetics. In this study, the whole-genome sequencing (WGS) and annotation results of E. keratini EPI-7T were improved, and through comparative analysis, it was confirmed that the E. keratini EPI-7T has more metabolite-related genes than comparison strains. In addition, we annotated the vital genes for biosynthesis of 20 amino acids, orotic acid, riboflavin (B2) and chorismate. In particular, we were able to prospect that orotic acid could accumulate inside E. keratini EPI-7T under uracil-enriched conditions. Therefore, through a genomics approach, this study aims to provide genetic information for the hidden potential of E. keratini EPI-7T and the strain development and biotechnology utilization to be conducted in further studies.
The skin tissue of the scalp is unique from other skin tissues because it coexists with hair, and many differences in microbial composition have been confirmed. In scalp tissues, hair loss occurs due to a combination of internal and external factors, and several studies are being conducted to counteract this. However, not many studies have addressed hair loss from the perspective of the microbiome. In this study, subjects with hair loss and those with normal scalps were set as experimental and control groups, respectively. In the experimental group, hair loss had progressed, and there was a large difference in microbiome composition compared to the group with normal scalps. In particular, differences in Accumulibacter, Staphylococcus, and Corynebacterium were found. From Staphylococcus epidermidis Cicaria, two active components were isolated as a result of repeated column chromatography. Spectroscopic data led to the determination of chemical structures for adenosine and biotin. Fractions were obtained, and ex vivo tests were conducted using hair follicles derived from human scalp tissue. When the microbiome adenosine-treated group was compared to the control group, hair follicle length was increased, and hair root diameter was maintained during the experimental periods. In addition, the Cicaria culture medium and the microbial adenosine- and biotin-treated groups maintained the anagen phase, reducing progression to the catagen phase in the hair growth cycle. In conclusion, it was confirmed that the Cicaria culture medium and the microbial adenosine and biotin derived from the culture were effective in inhibiting hair loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.