CRISPR/Cas systems offer a powerful sensing mechanism to transduce sequence‐specific information into amplified analytical signals. However, performing multiplexed CRISPR/Cas assays remains challenging and often requires complex approaches for multiplexed assays. Here, a hydrogel‐based CRISPR/Cas12 system termed CLAMP (Cas‐Loaded Annotated Micro‐Particles) is described. The approach compartmentalizes the CRISPR/Cas reaction in spatially‐encoded hydrogel microparticles (HMPs). Each HMP is identifiable by its face code and becomes fluorescent when target DNA is present. The assay is further streamlined by capturing HMPs inside a microfluidic device; the captured particles are then automatically recognized by a machine‐learning algorithm. The CLAMP assay is fast, highly sensitive (attomolar detection limits with preamplification), and capable of multiplexing in a single‐pot assay. As a proof‐of‐concept clinical application, CLAMP is applied to detect nucleic acid targets of human papillomavirus in cervical brushing samples.
Electrochemiluminescence (ECL) has an inherently low background and enables precise chemical reactions through electrical control. Here, we report an advanced ECL system, termed ECLipse (ECL in paired signal electrode). We physically separated ECL generation from target detection: These two processes were carried out in isolated chambers and coupled through an electrode. The strategy allowed us to minimize cross-chemical reactions, design electrodes for high ECL signals, and integrate multiple sensors in a chip. As a proof of concept, we implemented an eight-plex ECLipse and applied it to detect host factors in human plasma. ECLipse achieved higher signal-to-noise ratio than conventional ECL assays and was >7000-fold more sensitive than enzyme-linked immunosorbent assay. In a pilot clinical study, we could detect septic conditions by measuring host factors [i.e., interleukin-3 (IL-3), IL-6, and procalcitonin (PCT)]. ECLipse assay further revealed distinct IL-3 and IL-6 patterns in patients with severe acute respiratory syndrome coronavirus 2 infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.