Natural killer (NK) cells develop in the bone marrow, but their in vivo stages of maturation, expansion and acquisition of receptors that guide target cell specificity are not well defined. We describe here such stages of development. We also show that developing NK cells actively proliferate at a phenotypically distinguishable immature stage after they have acquired expression of Ly49 and CD94-NKG2 receptors. These studies provide a developmental framework for NK cell maturation in vivo and suggest the possible involvement of the Ly49 and CD94-NKG2 receptors themselves in modulating expansion of NK cell populations with a given NK cell receptor repertoire.
The natural killer (NK) cell activation receptor Ly49H is required for resistance to murine cytomegalovirus (MCMV). We show here that NK cell proliferation and production of interferon-gamma (IFN-gamma) was not dependent on Ly49H expression during early MCMV infection. During a later phase of infection, however, Ly49H+ NK cells selectively proliferated and this expansion was blocked by anti-Ly49H administration. With vaccinia virus infection, neither the early nor late phase of NK cell proliferation was selective for Ly49H+ NK cells. These findings indicated that Ly49H+ NK cells were specifically activated by MCMV and that MCMV infection was characterized by nonspecific and specific phases of NK cell activation in vivo.
Persistent viral infection and its associated chronic diseases are a global health concern. Interleukin (IL) 17–producing Th17 cells have been implicated in the pathogenesis of various autoimmune diseases, and in protection from bacterial or fungal infection. However, the role of Th17 cells in persistent viral infection remains unknown. We report that Th17 cells preferentially develop in vitro and in vivo in an IL-6–dependent manner after Theiler’s murine encephalomyelitis virus infection. Th17 cells promote persistent viral infection and induce the pathogenesis of chronic demyelinating disease. IL-17 up-regulates antiapoptotic molecules and, consequently, increases persistent infection by enhancing the survival of virus-infected cells and blocking target cell destruction by cytotoxic T cells. Neutralization of IL-17 augments virus clearance by eliminating virus-infected cells and boosting lytic function by cytotoxic T cells, leading to the prevention of disease development. Thus, these results indicate a novel pathogenic role of Th17 cells via IL-17 in persistent viral infection and its associated chronic inflammatory diseases.
Interleukin-6 (IL-6) plays an important role in the development and progression of inflammatory responses, autoimmune diseases, and cancers. Many viral infections, including Theiler's murine encephalomyelitis virus (TMEV), result in the vigorous production of IL-6. However, the role of IL-6 in the development of virus-induced inflammatory responses is unclear. The infection of susceptible mice with TMEV induces the development of chronic demyelinating disease, which is considered a relevant infectious model for multiple sclerosis. In this study, we demonstrate that resistant C57BL/6 mice carrying an IL-6 transgene (IL-6 Tg) develop a TMEV-induced demyelinating disease accompanied by an increase in viral persistence and an elevated Th17 cell response in the central nervous system. Either IL-6 or IL-17 induced the expression of Bcl-2 and Bcl-xL at a high concentration. The upregulated expression of prosurvival molecules in turn inhibited target cell destruction by virus-specific CD8 ؉ T cells. More interestingly, IL-6 and IL-17 synergistically promoted the expression of these prosurvival molecules, preventing cellular apoptosis at a much lower (<5-fold) concentration. The signals involved in the synergy appear to include the activation of both STAT3 and NF-B via distinct cytokine-dependent pathways. Thus, the excessive IL-6 promotes the generation of Th17 cells, and the resulting IL-6 and IL-17 synergistically promote viral persistence by protecting virus-infected cells from apoptosis and CD8؉ T cell-mediated target destruction. These results suggest that blocking both IL-6 and IL-17 functions are important considerations for therapies of chronic viral diseases, autoimmune diseases, and cancers. IMPORTANCEThis study indicates that an excessive level of IL-6 cytokine produced following viral infection promotes the development of IL-17-producing pathogenic helper T cells. We demonstrate here for the first time that IL-6 together with IL-17 synergistically enhances the expression of survival molecules to hinder critical host defense mechanisms removing virus-infected cells. This finding has an important implication in controlling not only chronic viral infections but also autoimmune diseases and cancers, which are associated with prolonged cell survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.