Electromyography (EMG) is one of the most common methods to detect muscle activities and intentions. However, it has been difficult to estimate accurate hand motions represented by the finger joint angles using EMG signals. We propose an encoder-decoder network with an attention mechanism, an explainable deep learning model that estimates 14 finger joint angles from forearm EMG signals. This study demonstrates that the model trained by the single-finger motion data can be generalized to estimate complex motions of random fingers. The color map result of the after-training attention matrix shows that the proposed attention algorithm enables the model to learn the nonlinear relationship between the EMG signals and the finger joint angles, which is explainable. The highly activated entries in the color map of the attention matrix derived from model training are consistent with the experimental observations in which certain EMG sensors are highly activated when a particular finger moves. In summary, this study proposes an explainable deep learning model that estimates finger joint angles based on EMG signals of the forearm using the attention mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.