Dry gravity separation using a vibrating zirconia ball bed is proposed in this study to separate aluminum (Al) and stainless steel (STS) scraps obtained from spent hard disk drive recycling. The effects of zirconia ball sizes and vibrating power (vibration amplitude) on the separation efficiency of Al and STS scraps were investigated. The zirconia balls moved down at the center of the vessel and rose with the wall during the vibration test. Although more STS scraps sunk than Al scraps did, the separation efficiency was not maintained because Al scraps also sunk along with balls’ movement. The separation efficiency increased to 86.6% using 1-mm zirconia balls with a 2.5-mm vibration amplitude at 4 min, but it decreased rapidly by ball moving. Therefore, when a ball bed of mixed sizes (2:1 ratio of 1 and 3 mm) was used and arranged, whereby the 3-mm zirconia balls were above the 1-mm ball bed, the separation efficiency increased to 100% for more than 2 min. This dramatic improvement was because the 3-mm ball bed acted as a barrier to prevent sunken STS scraps from rising, and Al scrap cannot sink through the 3-mm ball bed. These results indicate that the separation of Al and STS scraps could be achieved successfully using the dry gravity separation method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.