Person re-identification (reID) aims at retrieving an image of the person of interest from a set of images typically captured by multiple cameras. Recent reID methods have shown that exploiting local features describing body parts, together with a global feature of a person image itself, gives robust feature representations, even in the case of missing body parts. However, using the individual part-level features directly, without considering relations between body parts, confuses differentiating identities of different persons having similar attributes in corresponding parts. To address this issue, we propose a new relation network for person reID that considers relations between individual body parts and the rest of them. Our model makes a single part-level feature incorporate partial information of other body parts as well, supporting it to be more discriminative. We also introduce a global contrastive pooling (GCP) method to obtain a global feature of a person image. We propose to use contrastive features for GCP to complement conventional max and averaging pooling techniques. We show that our model outperforms the state of the art on the Market1501, DukeMTMC-reID and CUHK03 datasets, demonstrating the effectiveness of our approach on discriminative person representations.
Predicting depth from a monocular video sequence is an important task for autonomous driving. Although it has advanced considerably in the past few years, recent methods based on convolutional neural networks (CNNs) discard temporal coherence in the video sequence and estimate depth independently for each frame, which often leads to undesired inconsistent results over time. To address this problem, we propose to memorize temporal consistency in the video sequence, and leverage it for the task of depth prediction. To this end, we introduce a two-stream CNN with a flow-guided memory module, where each stream encodes visual and temporal features, respectively. The memory module, implemented using convolutional gated recurrent units (ConvGRUs), inputs visual and temporal features sequentially together with optical flow tailored to our task. It memorizes trajectories of individual features selectively and propagates spatial information over time, enforcing a long-term temporal consistency to prediction results. We evaluate our method on the KITTI benchmark dataset in terms of depth prediction accuracy, temporal consistency and runtime, and achieve a new state of the art. We also provide an extensive experimental analysis, clearly demonstrating the effectiveness of our approach to memorizing temporal consistency for depth prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.