Membranes play a crucial role in efficiency and longevity of flow batteries. Vanadium flow batteries suffer self-discharge and capacity fading due to crossover of electrolyte components through the membrane from one battery half-cell to the other. We consider the impact of vanadium species crossing ion exchange membranes on state of charge of the battery and we present a simple method to determine crossover characteristics using half-cell open circuit potential measurements. State of charge for the negative and positive half-cell is simulated based on assumptions and simplifications for cation and anion exchange membranes and different crossover parameters. We introduce a crossover index "IndXovr" which enables the determination of crossover direction from state of charge data for the negative and positive half-cell and therewith identification of the half-cell in which predominant self-discharge occurs. Furthermore IndXovr allows statements on crossover amount in dependence on state of operation. Simulated case studies are compared to experimental state of charge values estimated from half-cell potential measurements. Our results reveal that half-cell potential monitoring respectively half-cell SOC estimation, is a simple and suitable tool for the identification of crossover direction and relative amount of crossover in VFB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.