The COVID-19 pandemic was caused by a highly contagious coronavirus that has triggered worldwide control actions such as social distancing and lockdowns. COVID-19 control actions have resulted in improved air quality locally and around the world in the short-term by limiting human activity. We analyzed the impacts of social distancing and transboundary pollutants on air quality changes using open data and examined the corresponding health benefits focusing on two domestic cities (Seoul and Daegu) in Korea where the spread of coronavirus was severe. During the COVID-19 pandemic, PM2.5, PM10, and NO2 concentrations decreased significantly by 31%, 61%, and 33%, respectively, compared to the previous three years. In particular, the PM2.5/PM10 ratio fell 24.5% after the implementation of social distancing, suggesting a decrease in anthropogenic emissions. Moreover, we found that the air quality index (AQI) also improved significantly, with a focus on reducing exposure to sensitive groups. In Seoul and Daegu, improved air quality prevented 250 and 78 premature deaths, and health costs were USD 884 million and USD 278 million, respectively. On the other hand, health loss due to COVID-19 deaths was in sharp contrast to USD 7.1 million and USD 543.6 million. Our findings indicate a significant association between COVID-19 prevalence patterns and health outcomes.
In recent years, several epidemics by transmissible respiratory viruses have emerged, especially pandemics caused by coronaviruses. The most significant public health emergency may be the COVID-19 pandemic. Identifying the transmission of infectious disease plays an important role in healthcare for protecting and implementing effective measures for public health. However, studies on SARS-CoV-2 transmission dynamics are lacking. Infection with the airborne virus is very important and airborne transmission is likely to cause major problems. However, research on the aerosol route of the virus is very limited. Here, we aimed to present airborne coronavirus detection methods in previous studies and address the importance of methodology for the future. In previous studies on airborne coronavirus, detection methods were different in each study. Therefore, comparison between the airborne virus detected in each study is impossible, and the risk assessment could not be properly analysed due to limitations in applying it as basic data. There is currently a risk assessment for coronavirus, but the risk assessment due to airborne transmission is insufficient. Therefore, recommending accurate guidelines for airborne transmission is difficult. Future research should be conducted to standardize airborne virus detection methods to prevent transmission through rapid risk assessment and monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.