Successful implantation is the result of reciprocal interactions between the implantation-competent blastocyst and receptive uterus. Although various cellular aspects and molecular pathways of this dialogue have been identified, a comprehensive understanding of the implantation process is still missing. The receptive state of the uterus, which lasts for a limited period, is defined as the time when the uterine environment is conducive to blastocyst acceptance and implantation. A better understanding of the molecular signals that regulate uterine receptivity and implantation competency of the blastocyst is of clinical relevance because unraveling the nature of these signals may lead to strategies to correct implantation failure and improve pregnancy rates. Gene expression studies and genetically engineered mouse models have provided valuable clues to the implantation process with respect to specific growth factors, cytokines, lipid mediators, adhesion molecules, and transcription factors. However, a staggering amount of information from microarray experiments is also being generated at a rapid pace. If properly annotated and explored, this information will expand our knowledge regarding yet-to-be-identified unique, complementary, and/or redundant molecular pathways in implantation. It is hoped that the forthcoming information will generate new ideas and concepts for a process that is essential for maintaining procreation and solving major reproductive health issues in women.
We have demonstrated previously that cyclo-oxygenase-2 (COX2), the rate-limiting enzyme in the biosynthesis of prostaglandins (PGs), is essential for blastocyst implantation and decidualization. However, the candidate PG(s) that participates in these processes and the mechanism of its action remain undefined. Using COX2-deficient mice and multiple approaches, we demonstrate herein that COX2-derived prostacyclin (PGI 2 ) is the primary PG that is essential for implantation and decidualization. Several lines of evidence suggest that the effects of PGI 2 are mediated by its activation of the nuclear hormone receptor PPAR␦, demonstrating the first reported biologic function of this receptor signaling pathway.
Division of spermatogonial stem cells 1 produces daughter cells that either maintain their stem cell identity or undergo differentiation to form mature sperm. The Sertoli cell, the only somatic cell within seminiferous tubules, provides the stem cell niche through physical support and expression of surface proteins and soluble factors 2,3 . Here we show that the Ets related molecule 4 (ERM) is expressed exclusively within Sertoli cells in the testis and is required for spermatogonial stem cell self-renewal. Mice with targeted disruption of ERM have a loss of maintenance of spermatogonial stem cell self-renewal without a block in normal spermatogenic differentiation and thus have progressive germ-cell depletion and a Sertoli-cell-only syndrome. Microarray analysis of primary Sertoli cells from ERM-deficient mice showed alterations in secreted factors known to regulate the haematopoietic stem cell niche. These results identify a new function for the Ets family transcription factors in spermatogenesis and provide an example of transcriptional control of a vertebrate stem cell niche.
Successful reproduction in mammals requires a competent egg, which is formed during meiosis through two assymetrical cell divisions. Here, we show that a recently identified formin homology (FH) gene, formin-2 (Fmn2), is a maternal-effect gene that is expressed in oocytes and is required for progression through metaphase of meiosis I. Fmn2(-/-) oocytes cannot correctly position the metaphase spindle during meiosis I and form the first polar body. We demonstrate that Fmn2 is required for microtubule-independent chromatin positioning during metaphase I. Fertilization of Fmn2(-/-) oocytes results in polyploid embryo formation, recurrent pregnancy loss and sub-fertility in Fmn2(-/-) females. Injection of Fmn2 mRNA into Fmn2-deficient oocytes rescues the metaphase I block. Given that errors in meiotic maturation result in severe birth defects and are the most common cause of chromosomal aneuploidy and pregnancy loss in humans, studies of Fmn2 may provide a better understanding of infertility and birth defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.