The ever-increasing number of vehicles on the road puts pressure on car manufacturers to make their car fuel-efficient. With autonomous vehicles, we can find new strategies to optimize fuels. We propose a reinforcement learning algorithm that trains deep neural networks to generate a fuel-efficient velocity profile for autonomous vehicles given road altitude information for the planned trip. Using a highly accurate industry-accepted fuel economy simulation program, we train our deep neural network model. We developed a technique for adapting the heterogeneous simulation program on top of an open-source deep learning framework, and reduced dimension of the problem output with suitable parameterization to train the neural network much faster. The learned model combined with reinforcement learning-based strategy generation effectively generated the velocity profile so that autonomous vehicles can follow to control itself in a fuel efficient way. We evaluate our algorithm’s performance using the fuel economy simulation program for various altitude profiles. We also demonstrate that our method can teach neural networks to generate useful strategies to increase fuel economy even on unseen roads. Our method improved fuel economy by 8% compared to a simple grid search approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.