This investigation was performed to determine the hydraulic conductivity coefficient and water holding capacity for a specified compaction forces which are the amount of mechanical energy applied to the porous granule (PG) volume. Most current specifications of minerals and perlite as growth media require to be compacted to a specified density, which in general is equivalent to a certain percentage of laboratory compaction. The water holding capacity of the saturated PG was very large at potential above -1 bar compared with perlite, but very little water remained below this value. The water holding capacity and hydraulic conductivity characteristics of graded PG amended with the ground coir less than 2 mm in diameter were also determined from pressure outflow data. The saturated hydraulic conductivity of the saturated and compacted PG was slightly lower by more than one tenth order of magnitude at equal matric potentials of perlite, but when expressed on the basis of equal water deficits, the conductivity of PG was higher at all but the smallest deficits than those of perlite.
BACKGROUND: This study was conducted to develop selenium (Se)-and germanium (Ge)-enriched rice by foliar spray application of organic or inorganic Se and Ge. METHODS AND RESULTS: The time and frequency of organic or inorganic Se and Ge treatment were performed at the five main growth stages as followings: effective tillering stage (E), maximum tillering stage (M), booting stage (B), heading stage (H), grain filling stage (G). The main treatment plots were consisted of ① 'once' treatment (at each E, M, B, H, G stage, Se/Ge single apply), ② 'twice I' (at H + G stages, organic or inorganic Se/Ge apply), ③ 'twice II' (at H + G stages, mixture apply of Se + Ge + pesticide). The organic or inorganic Se treatment concentration was 20 and 40 ppm, and the Ge was 50 and 100 ppm. The Se and Ge contents in rice grain (brown rice and polished rice) were analyzed by inductively coupled plasma (ICP). The highest Se content was noted in brown rice 'twice I' with Se 40 ppm (1394.06) at H + G stages, but the lowest was in 'once' with Se 40 ppm (367.79 µgㆍkg-1) at B stage. The highest of Se content in polished rice was found in 'twice I' of Se 40 ppm (1090.25) at H + G stages, but the lowest was in 'once' with Se 40 ppm (403.53 µgㆍkg-1) at E stage. On the other hand, The highest of Ge content in brown rice was found in 'twice I' with Ge 100 ppm (398.66) at H + G stages, but the lowest was in 'once' with Ge 100 ppm (139.64 µgㆍkg-1) at B stage. The highest of Ge content in polished rice was found in 'twice I' of Ge 100 ppm (300.29) at H + G stages, but the lowest was in 'once' with Ge 100 ppm (142.24 µgㆍkg-1) at B stage. CONCLUSION: Se and Ge contents both in brown rice and polished rice treated with organic Se and Ge forms were higher than those of inorganic Se and Ge. Overall results concluded that the supplementation of organic Se and Ge contents in brown and polished rice contents were comparatively higher than the inorganic Se and Ge. This is results also proved that the foliar spray application of organic Se and Ge has positive nutritive effect on the rice for regular consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.